(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* iff) Even. Proof. unfold Even. solve_predicate_wd. Qed. Instance Odd_wd : Proper (eq==>iff) Odd. Proof. unfold Odd. solve_predicate_wd. Qed. Instance even_wd : Proper (eq==>Logic.eq) even. Proof. intros x x' EQ. rewrite eq_iff_eq_true, 2 even_spec. now apply Even_wd. Qed. Instance odd_wd : Proper (eq==>Logic.eq) odd. Proof. intros x x' EQ. rewrite eq_iff_eq_true, 2 odd_spec. now apply Odd_wd. Qed. Lemma Even_or_Odd : forall x, Even x \/ Odd x. Proof. nzinduct x. left. exists 0. now nzsimpl. intros x. split; intros [(y,H)|(y,H)]. right. exists y. rewrite H. now nzsimpl. left. exists (S y). rewrite H. now nzsimpl'. right. exists (P y). rewrite <- succ_inj_wd. rewrite H. nzsimpl'. now rewrite <- add_succ_l, <- add_succ_r, succ_pred. left. exists y. rewrite <- succ_inj_wd. rewrite H. now nzsimpl. Qed. Lemma double_below : forall n m, n<=m -> 2*n < 2*m+1. Proof. intros. nzsimpl'. apply lt_succ_r. now apply add_le_mono. Qed. Lemma double_above : forall n m, n 2*n+1 < 2*m. Proof. intros. nzsimpl'. rewrite <- le_succ_l, <- add_succ_l, <- add_succ_r. apply add_le_mono; now apply le_succ_l. Qed. Lemma Even_Odd_False : forall x, Even x -> Odd x -> False. Proof. intros x (y,E) (z,O). rewrite O in E; clear O. destruct (le_gt_cases y z) as [LE|GT]. generalize (double_below _ _ LE); order. generalize (double_above _ _ GT); order. Qed. Lemma orb_even_odd : forall n, orb (even n) (odd n) = true. Proof. intros. destruct (Even_or_Odd n) as [H|H]. rewrite <- even_spec in H. now rewrite H. rewrite <- odd_spec in H. now rewrite H, orb_true_r. Qed. Lemma negb_odd_even : forall n, negb (odd n) = even n. Proof. intros. generalize (Even_or_Odd n) (Even_Odd_False n). rewrite <- even_spec, <- odd_spec. destruct (odd n), (even n); simpl; intuition. Qed. Lemma negb_even_odd : forall n, negb (even n) = odd n. Proof. intros. rewrite <- negb_odd_even. apply negb_involutive. Qed. Lemma even_0 : even 0 = true. Proof. rewrite even_spec. exists 0. now nzsimpl. Qed. Lemma odd_1 : odd 1 = true. Proof. rewrite odd_spec. exists 0. now nzsimpl'. Qed. Lemma Odd_succ_Even : forall n, Odd (S n) <-> Even n. Proof. split; intros (m,H). exists m. apply succ_inj. now rewrite add_1_r in H. exists m. rewrite add_1_r. now apply succ_wd. Qed. Lemma odd_succ_even : forall n, odd (S n) = even n. Proof. intros. apply eq_iff_eq_true. rewrite even_spec, odd_spec. apply Odd_succ_Even. Qed. Lemma even_succ_odd : forall n, even (S n) = odd n. Proof. intros. now rewrite <- negb_odd_even, odd_succ_even, negb_even_odd. Qed. Lemma Even_succ_Odd : forall n, Even (S n) <-> Odd n. Proof. intros. now rewrite <- even_spec, even_succ_odd, odd_spec. Qed. Lemma odd_pred_even : forall n, odd (P n) = even n. Proof. intros. rewrite <- (succ_pred n) at 2. symmetry. apply even_succ_odd. Qed. Lemma even_pred_odd : forall n, even (P n) = odd n. Proof. intros. rewrite <- (succ_pred n) at 2. symmetry. apply odd_succ_even. Qed. Lemma even_add : forall n m, even (n+m) = Bool.eqb (even n) (even m). Proof. intros. case_eq (even n); case_eq (even m); rewrite <- ?negb_true_iff, ?negb_even_odd, ?odd_spec, ?even_spec; intros (m',Hm) (n',Hn). exists (n'+m'). now rewrite mul_add_distr_l, Hn, Hm. exists (n'+m'). now rewrite mul_add_distr_l, Hn, Hm, add_assoc. exists (n'+m'). now rewrite mul_add_distr_l, Hn, Hm, add_shuffle0. exists (n'+m'+1). rewrite Hm,Hn. nzsimpl'. now rewrite add_shuffle1. Qed. Lemma odd_add : forall n m, odd (n+m) = xorb (odd n) (odd m). Proof. intros. rewrite <- !negb_even_odd. rewrite even_add. now destruct (even n), (even m). Qed. Lemma even_mul : forall n m, even (mul n m) = even n || even m. Proof. intros. case_eq (even n); simpl; rewrite ?even_spec. intros (n',Hn). exists (n'*m). now rewrite Hn, mul_assoc. case_eq (even m); simpl; rewrite ?even_spec. intros (m',Hm). exists (n*m'). now rewrite Hm, !mul_assoc, (mul_comm 2). (* odd / odd *) rewrite <- !negb_true_iff, !negb_even_odd, !odd_spec. intros (m',Hm) (n',Hn). exists (n'*2*m' +n'+m'). rewrite Hn,Hm, !mul_add_distr_l, !mul_add_distr_r, !mul_1_l, !mul_1_r. now rewrite add_shuffle1, add_assoc, !mul_assoc. Qed. Lemma odd_mul : forall n m, odd (mul n m) = odd n && odd m. Proof. intros. rewrite <- !negb_even_odd. rewrite even_mul. now destruct (even n), (even m). Qed. Lemma even_opp : forall n, even (-n) = even n. Proof. assert (H : forall n, Even n -> Even (-n)). intros n (m,H). exists (-m). rewrite mul_opp_r. now apply opp_wd. intros. rewrite eq_iff_eq_true, !even_spec. split. rewrite <- (opp_involutive n) at 2. apply H. apply H. Qed. Lemma odd_opp : forall n, odd (-n) = odd n. Proof. intros. rewrite <- !negb_even_odd. now rewrite even_opp. Qed. Lemma even_sub : forall n m, even (n-m) = Bool.eqb (even n) (even m). Proof. intros. now rewrite <- add_opp_r, even_add, even_opp. Qed. Lemma odd_sub : forall n m, odd (n-m) = xorb (odd n) (odd m). Proof. intros. now rewrite <- add_opp_r, odd_add, odd_opp. Qed. End ZParityProp.