(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Type), (m<=n -> P n) -> (n<=m -> P m) -> P (Pmax n m). Proof. intros; apply max_case_strong; auto. congruence. Defined. Lemma Pmax_case : forall n m (P:positive -> Type), P n -> P m -> P (Pmax n m). Proof. intros. apply Pmax_case_strong; auto. Defined. Lemma Pmax_monotone: forall f, (Proper (Ple ==> Ple) f) -> forall x y, Pmax (f x) (f y) = f (Pmax x y). Proof. intros; apply max_monotone; auto. congruence. Qed. Lemma Pmin_case_strong : forall n m (P:positive -> Type), (m<=n -> P m) -> (n<=m -> P n) -> P (Pmin n m). Proof. intros; apply min_case_strong; auto. congruence. Defined. Lemma Pmin_case : forall n m (P:positive -> Type), P n -> P m -> P (Pmin n m). Proof. intros. apply Pmin_case_strong; auto. Defined. Lemma Pmin_monotone: forall f, (Proper (Ple ==> Ple) f) -> forall x y, Pmin (f x) (f y) = f (Pmin x y). Proof. intros; apply min_monotone; auto. congruence. Qed. Lemma Pmax_min_antimonotone : forall f, Proper (Ple==>Pge) f -> forall x y, Pmax (f x) (f y) == f (Pmin x y). Proof. intros f H. apply max_min_antimonotone. congruence. intros z z' Hz; red. specialize (H _ _ Hz). clear Hz. unfold Ple, Pge in *. contradict H. rewrite ZC4, H; auto. Qed. Lemma Pmin_max_antimonotone : forall f, Proper (Ple==>Pge) f -> forall x y, Pmin (f x) (f y) == f (Pmax x y). Proof. intros f H. apply min_max_antimonotone. congruence. intros z z' Hz; red. specialize (H _ _ Hz). clear Hz. unfold Ple, Pge in *. contradict H. rewrite ZC4, H; auto. Qed. (** For the other generic properties, we make aliases, since otherwise SearchAbout misses some of them (bad interaction with an Include). See GenericMinMax (or SearchAbout) for the statements. *) Definition Pmax_spec_le := max_spec_le. Definition Pmax_dec := max_dec. Definition Pmax_unicity := max_unicity. Definition Pmax_unicity_ext := max_unicity_ext. Definition Pmax_id := max_id. Notation Pmax_idempotent := Pmax_id (only parsing). Definition Pmax_assoc := max_assoc. Definition Pmax_comm := max_comm. Definition Pmax_l := max_l. Definition Pmax_r := max_r. Definition Ple_max_l := le_max_l. Definition Ple_max_r := le_max_r. Definition Pmax_le := max_le. Definition Pmax_le_iff := max_le_iff. Definition Pmax_lt_iff := max_lt_iff. Definition Pmax_lub_l := max_lub_l. Definition Pmax_lub_r := max_lub_r. Definition Pmax_lub := max_lub. Definition Pmax_lub_iff := max_lub_iff. Definition Pmax_lub_lt := max_lub_lt. Definition Pmax_lub_lt_iff := max_lub_lt_iff. Definition Pmax_le_compat_l := max_le_compat_l. Definition Pmax_le_compat_r := max_le_compat_r. Definition Pmax_le_compat := max_le_compat. Definition Pmin_spec_le := min_spec_le. Definition Pmin_dec := min_dec. Definition Pmin_unicity := min_unicity. Definition Pmin_unicity_ext := min_unicity_ext. Definition Pmin_id := min_id. Notation Pmin_idempotent := Pmin_id (only parsing). Definition Pmin_assoc := min_assoc. Definition Pmin_comm := min_comm. Definition Pmin_l := min_l. Definition Pmin_r := min_r. Definition Ple_min_l := le_min_l. Definition Ple_min_r := le_min_r. Definition Pmin_le := min_le. Definition Pmin_le_iff := min_le_iff. Definition Pmin_lt_iff := min_lt_iff. Definition Pmin_glb_l := min_glb_l. Definition Pmin_glb_r := min_glb_r. Definition Pmin_glb := min_glb. Definition Pmin_glb_iff := min_glb_iff. Definition Pmin_glb_lt := min_glb_lt. Definition Pmin_glb_lt_iff := min_glb_lt_iff. Definition Pmin_le_compat_l := min_le_compat_l. Definition Pmin_le_compat_r := min_le_compat_r. Definition Pmin_le_compat := min_le_compat. Definition Pmin_max_absorption := min_max_absorption. Definition Pmax_min_absorption := max_min_absorption. Definition Pmax_min_distr := max_min_distr. Definition Pmin_max_distr := min_max_distr. Definition Pmax_min_modular := max_min_modular. Definition Pmin_max_modular := min_max_modular. Definition Pmax_min_disassoc := max_min_disassoc. (** * Properties specific to the [positive] domain *) (** Simplifications *) Lemma Pmax_1_l : forall n, Pmax 1 n = n. Proof. intros. unfold Pmax. rewrite ZC4. generalize (Pcompare_1 n). destruct (n ?= 1); intuition. Qed. Lemma Pmax_1_r : forall n, Pmax n 1 = n. Proof. intros. rewrite max_comm. apply Pmax_1_l. Qed. Lemma Pmin_1_l : forall n, Pmin 1 n = 1. Proof. intros. unfold Pmin. rewrite ZC4. generalize (Pcompare_1 n). destruct (n ?= 1); intuition. Qed. Lemma Pmin_1_r : forall n, Pmin n 1 = 1. Proof. intros. rewrite min_comm. apply Pmin_1_l. Qed. (** Compatibilities (consequences of monotonicity) *) Lemma Psucc_max_distr : forall n m, Psucc (Pmax n m) = Pmax (Psucc n) (Psucc m). Proof. intros. symmetry. apply Pmax_monotone. intros x x'. unfold Ple. rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_succ_morphism. simpl; auto. Qed. Lemma Psucc_min_distr : forall n m, Psucc (Pmin n m) = Pmin (Psucc n) (Psucc m). Proof. intros. symmetry. apply Pmin_monotone. intros x x'. unfold Ple. rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_succ_morphism. simpl; auto. Qed. Lemma Pplus_max_distr_l : forall n m p, Pmax (p + n) (p + m) = p + Pmax n m. Proof. intros. apply Pmax_monotone. intros x x'. unfold Ple. rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_plus_morphism. rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. Qed. Lemma Pplus_max_distr_r : forall n m p, Pmax (n + p) (m + p) = Pmax n m + p. Proof. intros. rewrite (Pplus_comm n p), (Pplus_comm m p), (Pplus_comm _ p). apply Pplus_max_distr_l. Qed. Lemma Pplus_min_distr_l : forall n m p, Pmin (p + n) (p + m) = p + Pmin n m. Proof. intros. apply Pmin_monotone. intros x x'. unfold Ple. rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_plus_morphism. rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. Qed. Lemma Pplus_min_distr_r : forall n m p, Pmin (n + p) (m + p) = Pmin n m + p. Proof. intros. rewrite (Pplus_comm n p), (Pplus_comm m p), (Pplus_comm _ p). apply Pplus_min_distr_l. Qed.