(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Type), (m<=n -> P n) -> (n<=m -> P m) -> P (Nmax n m). Proof. intros; apply max_case_strong; auto. congruence. Defined. Lemma Nmax_case : forall n m (P:N -> Type), P n -> P m -> P (Nmax n m). Proof. intros. apply Nmax_case_strong; auto. Defined. Lemma Nmax_monotone: forall f, (Proper (Nle ==> Nle) f) -> forall x y, Nmax (f x) (f y) = f (Nmax x y). Proof. intros; apply max_monotone; auto. congruence. Qed. Lemma Nmin_case_strong : forall n m (P:N -> Type), (m<=n -> P m) -> (n<=m -> P n) -> P (Nmin n m). Proof. intros; apply min_case_strong; auto. congruence. Defined. Lemma Nmin_case : forall n m (P:N -> Type), P n -> P m -> P (Nmin n m). Proof. intros. apply Nmin_case_strong; auto. Defined. Lemma Nmin_monotone: forall f, (Proper (Nle ==> Nle) f) -> forall x y, Nmin (f x) (f y) = f (Nmin x y). Proof. intros; apply min_monotone; auto. congruence. Qed. Lemma Nmax_min_antimonotone : forall f, Proper (Nle==>Nge) f -> forall x y, Nmax (f x) (f y) == f (Nmin x y). Proof. intros f H. apply max_min_antimonotone. congruence. intros x x' Hx. red. specialize (H _ _ Hx). clear Hx. unfold Nle, Nge in *; contradict H. rewrite <- Ncompare_antisym, H; auto. Qed. Lemma Nmin_max_antimonotone : forall f, Proper (Nle==>Nge) f -> forall x y, Nmin (f x) (f y) == f (Nmax x y). Proof. intros f H. apply min_max_antimonotone. congruence. intros z z' Hz; red. specialize (H _ _ Hz). clear Hz. unfold Nle, Nge in *. contradict H. rewrite <- Ncompare_antisym, H; auto. Qed. (** For the other generic properties, we make aliases, since otherwise SearchAbout misses some of them (bad interaction with an Include). See GenericMinMax (or SearchAbout) for the statements. *) Definition Nmax_spec_le := max_spec_le. Definition Nmax_dec := max_dec. Definition Nmax_unicity := max_unicity. Definition Nmax_unicity_ext := max_unicity_ext. Definition Nmax_id := max_id. Notation Nmax_idempotent := Nmax_id (only parsing). Definition Nmax_assoc := max_assoc. Definition Nmax_comm := max_comm. Definition Nmax_l := max_l. Definition Nmax_r := max_r. Definition Nle_max_l := le_max_l. Definition Nle_max_r := le_max_r. Definition Nmax_le := max_le. Definition Nmax_le_iff := max_le_iff. Definition Nmax_lt_iff := max_lt_iff. Definition Nmax_lub_l := max_lub_l. Definition Nmax_lub_r := max_lub_r. Definition Nmax_lub := max_lub. Definition Nmax_lub_iff := max_lub_iff. Definition Nmax_lub_lt := max_lub_lt. Definition Nmax_lub_lt_iff := max_lub_lt_iff. Definition Nmax_le_compat_l := max_le_compat_l. Definition Nmax_le_compat_r := max_le_compat_r. Definition Nmax_le_compat := max_le_compat. Definition Nmin_spec_le := min_spec_le. Definition Nmin_dec := min_dec. Definition Nmin_unicity := min_unicity. Definition Nmin_unicity_ext := min_unicity_ext. Definition Nmin_id := min_id. Notation Nmin_idempotent := Nmin_id (only parsing). Definition Nmin_assoc := min_assoc. Definition Nmin_comm := min_comm. Definition Nmin_l := min_l. Definition Nmin_r := min_r. Definition Nle_min_l := le_min_l. Definition Nle_min_r := le_min_r. Definition Nmin_le := min_le. Definition Nmin_le_iff := min_le_iff. Definition Nmin_lt_iff := min_lt_iff. Definition Nmin_glb_l := min_glb_l. Definition Nmin_glb_r := min_glb_r. Definition Nmin_glb := min_glb. Definition Nmin_glb_iff := min_glb_iff. Definition Nmin_glb_lt := min_glb_lt. Definition Nmin_glb_lt_iff := min_glb_lt_iff. Definition Nmin_le_compat_l := min_le_compat_l. Definition Nmin_le_compat_r := min_le_compat_r. Definition Nmin_le_compat := min_le_compat. Definition Nmin_max_absorption := min_max_absorption. Definition Nmax_min_absorption := max_min_absorption. Definition Nmax_min_distr := max_min_distr. Definition Nmin_max_distr := min_max_distr. Definition Nmax_min_modular := max_min_modular. Definition Nmin_max_modular := min_max_modular. Definition Nmax_min_disassoc := max_min_disassoc. (** * Properties specific to the [positive] domain *) (** Simplifications *) Lemma Nmax_0_l : forall n, Nmax 0 n = n. Proof. intros. unfold Nmax. rewrite <- Ncompare_antisym. generalize (Ncompare_0 n). destruct (n ?= 0); intuition. Qed. Lemma Nmax_0_r : forall n, Nmax n 0 = n. Proof. intros. rewrite max_comm. apply Nmax_0_l. Qed. Lemma Nmin_0_l : forall n, Nmin 0 n = 0. Proof. intros. unfold Nmin. rewrite <- Ncompare_antisym. generalize (Ncompare_0 n). destruct (n ?= 0); intuition. Qed. Lemma Nmin_0_r : forall n, Nmin n 0 = 0. Proof. intros. rewrite min_comm. apply Nmin_0_l. Qed. (** Compatibilities (consequences of monotonicity) *) Lemma Nsucc_max_distr : forall n m, Nsucc (Nmax n m) = Nmax (Nsucc n) (Nsucc m). Proof. intros. symmetry. apply Nmax_monotone. intros x x'. unfold Nle. rewrite 2 nat_of_Ncompare, 2 nat_of_Nsucc. simpl; auto. Qed. Lemma Nsucc_min_distr : forall n m, Nsucc (Nmin n m) = Nmin (Nsucc n) (Nsucc m). Proof. intros. symmetry. apply Nmin_monotone. intros x x'. unfold Nle. rewrite 2 nat_of_Ncompare, 2 nat_of_Nsucc. simpl; auto. Qed. Lemma Nplus_max_distr_l : forall n m p, Nmax (p + n) (p + m) = p + Nmax n m. Proof. intros. apply Nmax_monotone. intros x x'. unfold Nle. rewrite 2 nat_of_Ncompare, 2 nat_of_Nplus. rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. Qed. Lemma Nplus_max_distr_r : forall n m p, Nmax (n + p) (m + p) = Nmax n m + p. Proof. intros. rewrite (Nplus_comm n p), (Nplus_comm m p), (Nplus_comm _ p). apply Nplus_max_distr_l. Qed. Lemma Nplus_min_distr_l : forall n m p, Nmin (p + n) (p + m) = p + Nmin n m. Proof. intros. apply Nmin_monotone. intros x x'. unfold Nle. rewrite 2 nat_of_Ncompare, 2 nat_of_Nplus. rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. Qed. Lemma Nplus_min_distr_r : forall n m p, Nmin (n + p) (m + p) = Nmin n m + p. Proof. intros. rewrite (Nplus_comm n p), (Nplus_comm m p), (Nplus_comm _ p). apply Nplus_min_distr_l. Qed.