(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* positive | xO : positive -> positive | xH : positive. (** Declare binding key for scope positive_scope *) Delimit Scope positive_scope with positive. (** Automatically open scope positive_scope for type positive, xO and xI *) Bind Scope positive_scope with positive. Arguments Scope xO [positive_scope]. Arguments Scope xI [positive_scope]. (** Postfix notation for positive numbers, allowing to mimic the position of bits in a big-endian representation. For instance, we can write 1~1~0 instead of (xO (xI xH)) for the number 6 (which is 110 in binary). NB: in the current file, only xH~1~0 is possible, since the interpretation of constants isn't available yet. *) Notation "p ~1" := (xI p) (at level 7, left associativity, format "p '~1'") : positive_scope. Notation "p ~0" := (xO p) (at level 7, left associativity, format "p '~0'") : positive_scope. Open Local Scope positive_scope. (** Successor *) Fixpoint Psucc (x:positive) : positive := match x with | p~1 => (Psucc p)~0 | p~0 => p~1 | xH => xH~0 end. (** Addition *) Set Boxed Definitions. Fixpoint Pplus (x y:positive) {struct x} : positive := match x, y with | p~1, q~1 => (Pplus_carry p q)~0 | p~1, q~0 => (Pplus p q)~1 | p~1, xH => (Psucc p)~0 | p~0, q~1 => (Pplus p q)~1 | p~0, q~0 => (Pplus p q)~0 | p~0, xH => p~1 | xH, q~1 => (Psucc q)~0 | xH, q~0 => q~1 | xH, xH => xH~0 end with Pplus_carry (x y:positive) {struct x} : positive := match x, y with | p~1, q~1 => (Pplus_carry p q)~1 | p~1, q~0 => (Pplus_carry p q)~0 | p~1, xH => (Psucc p)~1 | p~0, q~1 => (Pplus_carry p q)~0 | p~0, q~0 => (Pplus p q)~1 | p~0, xH => (Psucc p)~0 | xH, q~1 => (Psucc q)~1 | xH, q~0 => (Psucc q)~0 | xH, xH => xH~1 end. Unset Boxed Definitions. Infix "+" := Pplus : positive_scope. (** From binary positive numbers to Peano natural numbers *) Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat := match x with | p~1 => (pow2 + Pmult_nat p (pow2 + pow2))%nat | p~0 => Pmult_nat p (pow2 + pow2)%nat | xH => pow2 end. Definition nat_of_P (x:positive) := Pmult_nat x 1. (** From Peano natural numbers to binary positive numbers *) Fixpoint P_of_succ_nat (n:nat) : positive := match n with | O => xH | S x => Psucc (P_of_succ_nat x) end. (** Operation x -> 2*x-1 *) Fixpoint Pdouble_minus_one (x:positive) : positive := match x with | p~1 => p~0~1 | p~0 => (Pdouble_minus_one p)~1 | xH => xH end. (** Predecessor *) Definition Ppred (x:positive) := match x with | p~1 => p~0 | p~0 => Pdouble_minus_one p | xH => xH end. (** An auxiliary type for subtraction *) Inductive positive_mask : Set := | IsNul : positive_mask | IsPos : positive -> positive_mask | IsNeg : positive_mask. (** Operation x -> 2*x+1 *) Definition Pdouble_plus_one_mask (x:positive_mask) := match x with | IsNul => IsPos xH | IsNeg => IsNeg | IsPos p => IsPos p~1 end. (** Operation x -> 2*x *) Definition Pdouble_mask (x:positive_mask) := match x with | IsNul => IsNul | IsNeg => IsNeg | IsPos p => IsPos p~0 end. (** Operation x -> 2*x-2 *) Definition Pdouble_minus_two (x:positive) := match x with | p~1 => IsPos p~0~0 | p~0 => IsPos (Pdouble_minus_one p)~0 | xH => IsNul end. (** Subtraction of binary positive numbers into a positive numbers mask *) Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask := match x, y with | p~1, q~1 => Pdouble_mask (Pminus_mask p q) | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q) | p~1, xH => IsPos p~0 | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q) | p~0, q~0 => Pdouble_mask (Pminus_mask p q) | p~0, xH => IsPos (Pdouble_minus_one p) | xH, xH => IsNul | xH, _ => IsNeg end with Pminus_mask_carry (x y:positive) {struct y} : positive_mask := match x, y with | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q) | p~1, q~0 => Pdouble_mask (Pminus_mask p q) | p~1, xH => IsPos (Pdouble_minus_one p) | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q) | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q) | p~0, xH => Pdouble_minus_two p | xH, _ => IsNeg end. (** Subtraction of binary positive numbers x and y, returns 1 if x<=y *) Definition Pminus (x y:positive) := match Pminus_mask x y with | IsPos z => z | _ => xH end. Infix "-" := Pminus : positive_scope. (** Multiplication on binary positive numbers *) Fixpoint Pmult (x y:positive) {struct x} : positive := match x with | p~1 => y + (Pmult p y)~0 | p~0 => (Pmult p y)~0 | xH => y end. Infix "*" := Pmult : positive_scope. (** Division by 2 rounded below but for 1 *) Definition Pdiv2 (z:positive) := match z with | xH => xH | p~0 => p | p~1 => p end. Infix "/" := Pdiv2 : positive_scope. (** Comparison on binary positive numbers *) Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison := match x, y with | p~1, q~1 => Pcompare p q r | p~1, q~0 => Pcompare p q Gt | p~1, xH => Gt | p~0, q~1 => Pcompare p q Lt | p~0, q~0 => Pcompare p q r | p~0, xH => Gt | xH, q~1 => Lt | xH, q~0 => Lt | xH, xH => r end. Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope. Definition Plt (x y:positive) := (Pcompare x y Eq) = Lt. Definition Pgt (x y:positive) := (Pcompare x y Eq) = Gt. Definition Ple (x y:positive) := (Pcompare x y Eq) <> Gt. Definition Pge (x y:positive) := (Pcompare x y Eq) <> Lt. Infix "<=" := Ple : positive_scope. Infix "<" := Plt : positive_scope. Infix ">=" := Pge : positive_scope. Infix ">" := Pgt : positive_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope. Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope. Notation "x < y < z" := (x < y /\ y < z) : positive_scope. Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope. Definition Pmin (p p' : positive) := match Pcompare p p' Eq with | Lt | Eq => p | Gt => p' end. Definition Pmax (p p' : positive) := match Pcompare p p' Eq with | Lt | Eq => p' | Gt => p end. (**********************************************************************) (** Miscellaneous properties of binary positive numbers *) Lemma ZL11 : forall p:positive, p = xH \/ p <> xH. Proof. intros x; case x; intros; (left; reflexivity) || (right; discriminate). Qed. (**********************************************************************) (** Properties of successor on binary positive numbers *) (** Specification of [xI] in term of [Psucc] and [xO] *) Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0. Proof. reflexivity. Qed. Lemma Psucc_discr : forall p:positive, p <> Psucc p. Proof. intro x; destruct x as [p| p| ]; discriminate. Qed. (** Successor and double *) Lemma Psucc_o_double_minus_one_eq_xO : forall p:positive, Psucc (Pdouble_minus_one p) = p~0. Proof. intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx; reflexivity. Qed. Lemma Pdouble_minus_one_o_succ_eq_xI : forall p:positive, Pdouble_minus_one (Psucc p) = p~1. Proof. intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx; reflexivity. Qed. Lemma xO_succ_permute : forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0). Proof. intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto. Qed. Lemma double_moins_un_xO_discr : forall p:positive, Pdouble_minus_one p <> p~0. Proof. intro x; destruct x as [p| p| ]; discriminate. Qed. (** Successor and predecessor *) Lemma Psucc_not_one : forall p:positive, Psucc p <> xH. Proof. intro x; destruct x as [x| x| ]; discriminate. Qed. Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p. Proof. intro x; destruct x as [p| p| ]; [ idtac | idtac | simpl in |- *; auto ]; (induction p as [p IHp| | ]; [ idtac | reflexivity | reflexivity ]); simpl in |- *; simpl in IHp; try rewrite <- IHp; reflexivity. Qed. Lemma Psucc_pred : forall p:positive, p = xH \/ Psucc (Ppred p) = p. Proof. intro x; induction x as [x Hrecx| x Hrecx| ]; [ simpl in |- *; auto | simpl in |- *; intros; right; apply Psucc_o_double_minus_one_eq_xO | auto ]. Qed. (** Injectivity of successor *) Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q. Proof. intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H; discriminate H || (try (injection H; clear H; intro H)). rewrite (IHx y H); reflexivity. absurd (Psucc x = xH); [ apply Psucc_not_one | assumption ]. apply f_equal with (1 := H); assumption. absurd (Psucc y = xH); [ apply Psucc_not_one | symmetry in |- *; assumption ]. reflexivity. Qed. (**********************************************************************) (** Properties of addition on binary positive numbers *) (** Specification of [Psucc] in term of [Pplus] *) Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + xH. Proof. intro q; destruct q as [p| p| ]; reflexivity. Qed. Lemma Pplus_one_succ_l : forall p:positive, Psucc p = xH + p. Proof. intro q; destruct q as [p| p| ]; reflexivity. Qed. (** Specification of [Pplus_carry] *) Theorem Pplus_carry_spec : forall p q:positive, Pplus_carry p q = Psucc (p + q). Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; [ destruct y as [p0| p0| ] | destruct y as [p0| p0| ] | destruct y as [p| p| ] ]; simpl in |- *; auto; rewrite IHp; auto. Qed. (** Commutativity *) Theorem Pplus_comm : forall p q:positive, p + q = q + p. Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; [ destruct y as [p0| p0| ] | destruct y as [p0| p0| ] | destruct y as [p| p| ] ]; simpl in |- *; auto; try do 2 rewrite Pplus_carry_spec; rewrite IHp; auto. Qed. (** Permutation of [Pplus] and [Psucc] *) Theorem Pplus_succ_permute_r : forall p q:positive, p + Psucc q = Psucc (p + q). Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; [ destruct y as [p0| p0| ] | destruct y as [p0| p0| ] | destruct y as [p| p| ] ]; simpl in |- *; auto; [ rewrite Pplus_carry_spec; rewrite IHp; auto | rewrite Pplus_carry_spec; auto | destruct p; simpl in |- *; auto | rewrite IHp; auto | destruct p; simpl in |- *; auto ]. Qed. Theorem Pplus_succ_permute_l : forall p q:positive, Psucc p + q = Psucc (p + q). Proof. intros x y; rewrite Pplus_comm; rewrite Pplus_comm with (p := x); apply Pplus_succ_permute_r. Qed. Theorem Pplus_carry_pred_eq_plus : forall p q:positive, q <> xH -> Pplus_carry p (Ppred q) = p + q. Proof. intros q z H; elim (Psucc_pred z); [ intro; absurd (z = xH); auto | intros E; pattern z at 2 in |- *; rewrite <- E; rewrite Pplus_succ_permute_r; rewrite Pplus_carry_spec; trivial ]. Qed. (** No neutral for addition on strictly positive numbers *) Lemma Pplus_no_neutral : forall p q:positive, q + p <> p. Proof. intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H; discriminate H || injection H; clear H; intro H; apply (IHx y H). Qed. Lemma Pplus_carry_no_neutral : forall p q:positive, Pplus_carry q p <> Psucc p. Proof. intros x y H; absurd (y + x = x); [ apply Pplus_no_neutral | apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption ]. Qed. (** Simplification *) Lemma Pplus_carry_plus : forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s. Proof. intros x y z t H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec; assumption. Qed. Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q. Proof. intros x y z; generalize x y; clear x y. induction z as [z| z| ]. destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *; intro H; discriminate H || (try (injection H; clear H; intro H)). rewrite IHz with (1 := Pplus_carry_plus _ _ _ _ H); reflexivity. absurd (Pplus_carry x z = Psucc z); [ apply Pplus_carry_no_neutral | assumption ]. rewrite IHz with (1 := H); reflexivity. symmetry in H; absurd (Pplus_carry y z = Psucc z); [ apply Pplus_carry_no_neutral | assumption ]. reflexivity. destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *; intro H; discriminate H || (try (injection H; clear H; intro H)). rewrite IHz with (1 := H); reflexivity. absurd (x + z = z); [ apply Pplus_no_neutral | assumption ]. rewrite IHz with (1 := H); reflexivity. symmetry in H; absurd (y + z = z); [ apply Pplus_no_neutral | assumption ]. reflexivity. intros H x y; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption. Qed. Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r. Proof. intros x y z H; apply Pplus_reg_r with (r := x); rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y); assumption. Qed. Lemma Pplus_carry_reg_r : forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q. Proof. intros x y z H; apply Pplus_reg_r with (r := z); apply Pplus_carry_plus; assumption. Qed. Lemma Pplus_carry_reg_l : forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r. Proof. intros x y z H; apply Pplus_reg_r with (r := x); rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y); apply Pplus_carry_plus; assumption. Qed. (** Addition on positive is associative *) Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r. Proof. intros x y; generalize x; clear x. induction y as [y| y| ]; intro x. destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *; repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r; repeat rewrite Pplus_succ_permute_l; reflexivity || (repeat apply f_equal with (A := positive)); apply IHy. destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *; repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r; repeat rewrite Pplus_succ_permute_l; reflexivity || (repeat apply f_equal with (A := positive)); apply IHy. intro z; rewrite Pplus_comm with (p := xH); do 2 rewrite <- Pplus_one_succ_r; rewrite Pplus_succ_permute_l; rewrite Pplus_succ_permute_r; reflexivity. Qed. (** Commutation of addition with the double of a positive number *) Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0. Proof. destruct n; destruct m; simpl; auto. Qed. Lemma Pplus_xI_double_minus_one : forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q. Proof. intros; change (p~1) with (p~0 + xH) in |- *. rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l; rewrite Psucc_o_double_minus_one_eq_xO. reflexivity. Qed. Lemma Pplus_xO_double_minus_one : forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q. Proof. induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *; try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI; try rewrite IHp; try rewrite Pplus_xI_double_minus_one; try reflexivity. rewrite <- Psucc_o_double_minus_one_eq_xO; rewrite Pplus_one_succ_l; reflexivity. Qed. (** Misc *) Lemma Pplus_diag : forall p:positive, p + p = p~0. Proof. intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec; try rewrite IHx; reflexivity. Qed. (**********************************************************************) (** Peano induction and recursion on binary positive positive numbers *) (** (a nice proof from Conor McBride, see "The view from the left") *) Inductive PeanoView : positive -> Type := | PeanoOne : PeanoView xH | PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p). Fixpoint peanoView_xO p (q:PeanoView p) {struct q} : PeanoView (p~0) := match q in PeanoView x return PeanoView (x~0) with | PeanoOne => PeanoSucc _ PeanoOne | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q)) end. Fixpoint peanoView_xI p (q:PeanoView p) {struct q} : PeanoView (p~1) := match q in PeanoView x return PeanoView (x~1) with | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne) | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q)) end. Fixpoint peanoView p : PeanoView p := match p return PeanoView p with | xH => PeanoOne | p~0 => peanoView_xO p (peanoView p) | p~1 => peanoView_xI p (peanoView p) end. Definition PeanoView_iter (P:positive->Type) (a:P xH) (f:forall p, P p -> P (Psucc p)) := (fix iter p (q:PeanoView p) : P p := match q in PeanoView p return P p with | PeanoOne => a | PeanoSucc _ q => f _ (iter _ q) end). Require Import Eqdep_dec EqdepFacts. Theorem eq_dep_eq_positive : forall (P:positive->Type) (p:positive) (x y:P p), eq_dep positive P p x p y -> x = y. Proof. apply eq_dep_eq_dec. decide equality. Qed. Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'. Proof. intros. induction q. apply eq_dep_eq_positive. cut (xH=xH). pattern xH at 1 2 5, q'. destruct q'. trivial. destruct p0; intros; discriminate. trivial. apply eq_dep_eq_positive. cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'. intro. destruct p; discriminate. intro. unfold p0 in H. apply Psucc_inj in H. generalize q'. rewrite H. intro. rewrite (IHq q'0). trivial. trivial. Qed. Definition Prect (P:positive->Type) (a:P xH) (f:forall p, P p -> P (Psucc p)) (p:positive) := PeanoView_iter P a f p (peanoView p). Theorem Prect_succ : forall (P:positive->Type) (a:P xH) (f:forall p, P p -> P (Psucc p)) (p:positive), Prect P a f (Psucc p) = f _ (Prect P a f p). Proof. intros. unfold Prect. rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))). trivial. Qed. Theorem Prect_base : forall (P:positive->Type) (a:P xH) (f:forall p, P p -> P (Psucc p)), Prect P a f xH = a. Proof. trivial. Qed. Definition Prec (P:positive->Set) := Prect P. (** Peano induction *) Definition Pind (P:positive->Prop) := Prect P. (** Peano case analysis *) Theorem Pcase : forall P:positive -> Prop, P xH -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p. Proof. intros; apply Pind; auto. Qed. (**********************************************************************) (** Properties of multiplication on binary positive numbers *) (** One is right neutral for multiplication *) Lemma Pmult_1_r : forall p:positive, p * xH = p. Proof. intro x; induction x; simpl in |- *. rewrite IHx; reflexivity. rewrite IHx; reflexivity. reflexivity. Qed. (** Successor and multiplication *) Lemma Pmult_Sn_m : forall n m : positive, (Psucc n) * m = m + n * m. Proof. induction n as [n IH | n IH |]; simpl; intro m. rewrite IH; rewrite Pplus_assoc; rewrite Pplus_diag; rewrite <- Pplus_xO; reflexivity. reflexivity. symmetry; apply Pplus_diag. Qed. (** Right reduction properties for multiplication *) Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0. Proof. intros x y; induction x; simpl in |- *. rewrite IHx; reflexivity. rewrite IHx; reflexivity. reflexivity. Qed. Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0. Proof. intros x y; induction x; simpl in |- *. rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y); reflexivity. rewrite IHx; reflexivity. reflexivity. Qed. (** Commutativity of multiplication *) Theorem Pmult_comm : forall p q:positive, p * q = q * p. Proof. intros x y; induction y; simpl in |- *. rewrite <- IHy; apply Pmult_xI_permute_r. rewrite <- IHy; apply Pmult_xO_permute_r. apply Pmult_1_r. Qed. (** Distributivity of multiplication over addition *) Theorem Pmult_plus_distr_l : forall p q r:positive, p * (q + r) = p * q + p * r. Proof. intros x y z; induction x; simpl in |- *. rewrite IHx; rewrite <- Pplus_assoc with (q := (x * y)~0); rewrite Pplus_assoc with (p := (x * y)~0); rewrite Pplus_comm with (p := (x * y)~0); rewrite <- Pplus_assoc with (q := (x * y)~0); rewrite Pplus_assoc with (q := z); reflexivity. rewrite IHx; reflexivity. reflexivity. Qed. Theorem Pmult_plus_distr_r : forall p q r:positive, (p + q) * r = p * r + q * r. Proof. intros x y z; do 3 rewrite Pmult_comm with (q := z); apply Pmult_plus_distr_l. Qed. (** Associativity of multiplication *) Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r. Proof. intro x; induction x as [x| x| ]; simpl in |- *; intros y z. rewrite IHx; rewrite Pmult_plus_distr_r; reflexivity. rewrite IHx; reflexivity. reflexivity. Qed. (** Parity properties of multiplication *) Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r. Proof. intros x y z; induction z as [| z IHz| ]; try discriminate. intro H; apply IHz; clear IHz. do 2 rewrite Pmult_xO_permute_r in H. injection H; clear H; intro H; exact H. Qed. Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q. Proof. intros x y; induction y; try discriminate. rewrite Pmult_xO_permute_r; injection; assumption. Qed. (** Simplification properties of multiplication *) Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q. Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ]; intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind. simpl in H; apply IHp with (z~0); simpl in |- *; do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H). apply Pmult_xI_mult_xO_discr with (1 := H). simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H). symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H). apply IHp with (z~0); simpl in |- *; do 2 rewrite Pmult_xO_permute_r; assumption. apply Pmult_xO_discr with (1 := H). simpl in H; symmetry in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H). symmetry in H; apply Pmult_xO_discr with (1 := H). Qed. Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q. Proof. intros x y z H; apply Pmult_reg_r with (r := z). rewrite Pmult_comm with (p := x); rewrite Pmult_comm with (p := y); assumption. Qed. (** Inversion of multiplication *) Lemma Pmult_1_inversion_l : forall p q:positive, p * q = xH -> p = xH. Proof. intros x y; destruct x as [p| p| ]; simpl in |- *. destruct y as [p0| p0| ]; intro; discriminate. intro; discriminate. reflexivity. Qed. (**********************************************************************) (** Properties of comparison on binary positive numbers *) Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq. intro x; induction x as [x Hrecx| x Hrecx| ]; auto. Qed. (* A generalization of Pcompare_refl *) Theorem Pcompare_refl_id : forall (p : positive) (r : comparison), (p ?= p) r = r. induction p; auto. Qed. Theorem Pcompare_not_Eq : forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq. Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ]; split; simpl in |- *; auto; discriminate || (elim (IHp q); auto). Qed. Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q. Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ]; simpl in |- *; auto; intro H; [ rewrite (IHp q); trivial | absurd ((p ?= q) Gt = Eq); [ elim (Pcompare_not_Eq p q); auto | assumption ] | discriminate H | absurd ((p ?= q) Lt = Eq); [ elim (Pcompare_not_Eq p q); auto | assumption ] | rewrite (IHp q); auto | discriminate H | discriminate H | discriminate H ]. Qed. Lemma Pcompare_Gt_Lt : forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt. Proof. intro x; induction x as [x Hrecx| x Hrecx| ]; intro y; [ induction y as [y Hrecy| y Hrecy| ] | induction y as [y Hrecy| y Hrecy| ] | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *; auto; discriminate || intros H; discriminate H. Qed. Lemma Pcompare_eq_Lt : forall p q : positive, (p ?= q) Eq = Lt <-> (p ?= q) Gt = Lt. Proof. intros p q; split; [| apply Pcompare_Gt_Lt]. generalize q; clear q; induction p; induction q; simpl; auto. intro; discriminate. Qed. Lemma Pcompare_Lt_Gt : forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt. Proof. intro x; induction x as [x Hrecx| x Hrecx| ]; intro y; [ induction y as [y Hrecy| y Hrecy| ] | induction y as [y Hrecy| y Hrecy| ] | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *; auto; discriminate || intros H; discriminate H. Qed. Lemma Pcompare_eq_Gt : forall p q : positive, (p ?= q) Eq = Gt <-> (p ?= q) Lt = Gt. Proof. intros p q; split; [| apply Pcompare_Lt_Gt]. generalize q; clear q; induction p; induction q; simpl; auto. intro; discriminate. Qed. Lemma Pcompare_Lt_Lt : forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q. Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ]; simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2); auto; intros E; rewrite E; auto. Qed. Lemma Pcompare_Lt_eq_Lt : forall p q:positive, (p ?= q) Lt = Lt <-> (p ?= q) Eq = Lt \/ p = q. Proof. intros p q; split; [apply Pcompare_Lt_Lt |]. intro H; destruct H as [H | H]; [ | rewrite H; apply Pcompare_refl_id]. generalize q H. clear q H. induction p as [p' IH | p' IH |]; destruct q as [q' | q' |]; simpl; intro H; try (reflexivity || assumption || discriminate H); apply IH; assumption. Qed. Lemma Pcompare_Gt_Gt : forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q. Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ]; simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2); auto; intros E; rewrite E; auto. Qed. Lemma Pcompare_Gt_eq_Gt : forall p q:positive, (p ?= q) Gt = Gt <-> (p ?= q) Eq = Gt \/ p = q. Proof. intros p q; split; [apply Pcompare_Gt_Gt |]. intro H; destruct H as [H | H]; [ | rewrite H; apply Pcompare_refl_id]. generalize q H. clear q H. induction p as [p' IH | p' IH |]; destruct q as [q' | q' |]; simpl; intro H; try (reflexivity || assumption || discriminate H); apply IH; assumption. Qed. Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt. Proof. simple induction r; auto. Qed. Ltac ElimPcompare c1 c2 := elim (Dcompare ((c1 ?= c2) Eq)); [ idtac | let x := fresh "H" in (intro x; case x; clear x) ]. Lemma Pcompare_antisym : forall (p q:positive) (r:comparison), CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r). Proof. intro x; induction x as [p IHp| p IHp| ]; intro y; [ destruct y as [p0| p0| ] | destruct y as [p0| p0| ] | destruct y as [p| p| ] ]; intro r; reflexivity || (symmetry in |- *; assumption) || discriminate H || simpl in |- *; apply IHp || (try rewrite IHp); try reflexivity. Qed. Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt. Proof. intros; change Eq with (CompOpp Eq) in |- *. rewrite <- Pcompare_antisym; rewrite H; reflexivity. Qed. Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt. Proof. intros; change Eq with (CompOpp Eq) in |- *. rewrite <- Pcompare_antisym; rewrite H; reflexivity. Qed. Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq. Proof. intros; change Eq with (CompOpp Eq) in |- *. rewrite <- Pcompare_antisym; rewrite H; reflexivity. Qed. Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq). Proof. intros; change Eq at 1 with (CompOpp Eq) in |- *. symmetry in |- *; apply Pcompare_antisym. Qed. (** Comparison and the successor *) Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt. Proof. induction p as [p' IH | p' IH |]; simpl in *; [ elim (Pcompare_eq_Lt p' (Psucc p')); auto | apply Pcompare_refl_id | reflexivity]. Qed. Theorem Pcompare_p_Sq : forall p q : positive, (p ?= Psucc q) Eq = Lt <-> (p ?= q) Eq = Lt \/ p = q. Proof. intros p q; split. generalize p q; clear p q. induction p as [p' IH | p' IH |]; destruct q as [q' | q' |]; simpl; intro H. assert (T : p'~1 = q'~1 <-> p' = q'). split; intro HH; [inversion HH; trivial | rewrite HH; reflexivity]. cut ((p' ?= q') Eq = Lt \/ p' = q'). firstorder. apply IH. apply Pcompare_Gt_Lt; assumption. left; elim (Pcompare_eq_Lt p' q'); auto. destruct p'; discriminate. apply IH in H. left. destruct H as [H | H]; [elim (Pcompare_Lt_eq_Lt p' q'); auto; left; assumption | rewrite H; apply Pcompare_refl_id]. assert (T : p'~0 = q'~0 <-> p' = q'). split; intro HH; [inversion HH; trivial | rewrite HH; reflexivity]. cut ((p' ?= q') Eq = Lt \/ p' = q'); [firstorder | ]. elim (Pcompare_Lt_eq_Lt p' q'); auto. destruct p'; discriminate. left; reflexivity. left; reflexivity. right; reflexivity. intro H; destruct H as [H | H]. generalize q H; clear q H. induction p as [p' IH | p' IH |]; destruct q as [q' | q' |]; simpl in *; intro H; try (reflexivity || discriminate H). elim (Pcompare_eq_Lt p' (Psucc q')); auto; apply IH; assumption. elim (Pcompare_eq_Lt p' q'); auto. assert (H1 : (p' ?= q') Eq = Lt \/ p' = q'); [elim (Pcompare_Lt_eq_Lt p' q'); auto |]. destruct H1 as [H1 | H1]; [apply IH; assumption | rewrite H1; apply Pcompare_p_Sp]. elim (Pcompare_Lt_eq_Lt p' q'); auto. rewrite H; apply Pcompare_p_Sp. Qed. Lemma Plt_lt_succ : forall n m : positive, n < m -> n < Psucc m. Proof. unfold Plt; intros n m H; apply <- Pcompare_p_Sq; now left. Qed. (** 1 is the least positive number *) Lemma Pcompare_1 : forall p, ~ (p ?= xH) Eq = Lt. Proof. destruct p; discriminate. Qed. Lemma Plt_irrefl : forall p : positive, ~ p < p. Proof. intro p; unfold Plt; rewrite Pcompare_refl; discriminate. Qed. Lemma Plt_trans : forall n m p : positive, n < m -> m < p -> n < p. Proof. intros n m p; unfold Plt; elim p using Pind. intros _ H; false_hyp H Pcompare_1. clear p; intros p IH H1 H2. apply -> Pcompare_p_Sq in H2. apply Plt_lt_succ. destruct H2 as [H2 | H2]. now apply IH. now rewrite H2 in H1. Qed. Theorem Plt_ind : forall (A : positive -> Prop) (n : positive), A (Psucc n) -> (forall m : positive, n < m -> A m -> A (Psucc m)) -> forall m : positive, n < m -> A m. Proof. intros A n AB AS m. elim m using Pind; unfold Plt. intro H; false_hyp H Pcompare_1. clear m; intros m H1 H2. apply -> Pcompare_p_Sq in H2. destruct H2 as [H2 | H2]. auto. now rewrite <- H2. Qed. (**********************************************************************) (** Properties of subtraction on binary positive numbers *) Lemma Ppred_minus : forall p, Ppred p = Pminus p xH. Proof. destruct p; compute; auto. Qed. Definition Ppred_mask (p : positive_mask) := match p with | IsPos xH => IsNul | IsPos q => IsPos (Ppred q) | IsNul => IsNeg | IsNeg => IsNeg end. Lemma Pminus_mask_succ_r : forall p q : positive, Pminus_mask p (Psucc q) = Pminus_mask_carry p q. Proof. induction p; destruct q; simpl in *; (now try rewrite IHp) || (now destruct p). Qed. Theorem Pminus_mask_carry_spec : forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q). Proof. induction p; destruct q; simpl; try reflexivity; try rewrite IHp; try now destruct (Pminus_mask p q) as [| r |]; [| destruct r |]. now destruct p. Qed. Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q). Proof. intros p q; unfold Pminus. rewrite Pminus_mask_succ_r. rewrite Pminus_mask_carry_spec. now destruct (Pminus_mask p q) as [| r |]; [| destruct r |]. Qed. Lemma double_eq_zero_inversion : forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul. Proof. destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ]. Qed. Lemma double_plus_one_zero_discr : forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul. Proof. simple induction p; intros; discriminate. Qed. Lemma double_plus_one_eq_one_inversion : forall p:positive_mask, Pdouble_plus_one_mask p = IsPos xH -> p = IsNul. Proof. destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ]. Qed. Lemma double_eq_one_discr : forall p:positive_mask, Pdouble_mask p <> IsPos xH. Proof. simple induction p; intros; discriminate. Qed. Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul. Proof. intro x; induction x as [p IHp| p IHp| ]; [ simpl in |- *; rewrite IHp; simpl in |- *; trivial | simpl in |- *; rewrite IHp; auto | auto ]. Qed. Lemma Pminus_mask_carry_diag : forall p, Pminus_mask_carry p p = IsNeg. Proof. induction p; simpl; auto; rewrite IHp; auto. Qed. Lemma Pminus_mask_IsNeg : forall p q:positive, Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg. Proof. induction p; destruct q; simpl; intros; auto; try discriminate. unfold Pdouble_mask in H. generalize (IHp q). destruct (Pminus_mask p q); try discriminate. intro H'; rewrite H'; auto. unfold Pdouble_plus_one_mask in H. destruct (Pminus_mask p q); simpl; auto; try discriminate. unfold Pdouble_plus_one_mask in H. destruct (Pminus_mask_carry p q); simpl; auto; try discriminate. unfold Pdouble_mask in H. generalize (IHp q). destruct (Pminus_mask p q); try discriminate. intro H'; rewrite H'; auto. Qed. Lemma ZL10 : forall p q:positive, Pminus_mask p q = IsPos xH -> Pminus_mask_carry p q = IsNul. Proof. intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ]; simpl in |- *; intro H; try discriminate H; [ absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH); [ apply double_eq_one_discr | assumption ] | assert (Heq : Pminus_mask p q = IsNul); [ apply double_plus_one_eq_one_inversion; assumption | rewrite Heq; reflexivity ] | assert (Heq : Pminus_mask_carry p q = IsNul); [ apply double_plus_one_eq_one_inversion; assumption | rewrite Heq; reflexivity ] | absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH); [ apply double_eq_one_discr | assumption ] | destruct p; simpl in |- *; [ discriminate H | discriminate H | reflexivity ] ]. Qed. (** Properties of subtraction valid only for x>y *) Lemma Pminus_mask_Gt : forall p q:positive, (p ?= q) Eq = Gt -> exists h : positive, Pminus_mask p q = IsPos h /\ q + h = p /\ (h = xH \/ Pminus_mask_carry p q = IsPos (Ppred h)). Proof. intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ]; simpl in |- *; intro H; try discriminate H. destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (z~0); split. rewrite H4; reflexivity. split. simpl in |- *; rewrite H6; reflexivity. right; clear H6; destruct (ZL11 z) as [H8| H8]; [ rewrite H8; rewrite H8 in H4; rewrite ZL10; [ reflexivity | assumption ] | clear H4; destruct H7 as [H9| H9]; [ absurd (z = xH); assumption | rewrite H9; clear H9; destruct z as [p0| p0| ]; [ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ]. case Pcompare_Gt_Gt with (1 := H); [ intros H3; elim (IHp q H3); intros z H4; exists (z~1); elim H4; intros H5 H6; elim H6; intros H7 H8; split; [ simpl in |- *; rewrite H5; auto | split; [ simpl in |- *; rewrite H7; trivial | right; change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (z~1))) in |- *; rewrite H5; auto ] ] | intros H3; exists xH; rewrite H3; split; [ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ]. exists (p~0); auto. destruct (IHp q) as [z [H4 [H6 H7]]]. apply Pcompare_Lt_Gt; assumption. destruct (ZL11 z) as [vZ| ]; [ exists xH; split; [ rewrite ZL10; [ reflexivity | rewrite vZ in H4; assumption ] | split; [ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ; rewrite H6; trivial | auto ] ] | exists ((Ppred z)~1); destruct H7 as [| H8]; [ absurd (z = xH); assumption | split; [ rewrite H8; trivial | split; [ simpl in |- *; rewrite Pplus_carry_pred_eq_plus; [ rewrite H6; trivial | assumption ] | right; rewrite H8; reflexivity ] ] ] ]. destruct (IHp q H) as [z [H4 [H6 H7]]]. exists (z~0); split; [ rewrite H4; auto | split; [ simpl in |- *; rewrite H6; reflexivity | right; change (Pdouble_plus_one_mask (Pminus_mask_carry p q) = IsPos (Pdouble_minus_one z)) in |- *; destruct (ZL11 z) as [H8| H8]; [ rewrite H8; simpl in |- *; assert (H9 : Pminus_mask_carry p q = IsNul); [ apply ZL10; rewrite <- H8; assumption | rewrite H9; reflexivity ] | destruct H7 as [H9| H9]; [ absurd (z = xH); auto | rewrite H9; destruct z as [p0| p0| ]; simpl in |- *; [ reflexivity | reflexivity | absurd (xH = xH); [ assumption | reflexivity ] ] ] ] ] ]. exists (Pdouble_minus_one p); split; [ reflexivity | clear IHp; split; [ destruct p; simpl in |- *; [ reflexivity | rewrite Psucc_o_double_minus_one_eq_xO; reflexivity | reflexivity ] | destruct p; [ right | right | left ]; reflexivity ] ]. Qed. Theorem Pplus_minus : forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p. Proof. intros x y H; elim Pminus_mask_Gt with (1 := H); intros z H1; elim H1; intros H2 H3; elim H3; intros H4 H5; unfold Pminus in |- *; rewrite H2; exact H4. Qed. (* When x Pminus_mask p q = IsNeg. Proof. unfold Plt; induction p; destruct q; simpl; intros; auto; try discriminate. rewrite IHp; simpl; auto. rewrite IHp; simpl; auto. apply Pcompare_Gt_Lt; auto. destruct (Pcompare_Lt_Lt _ _ H). rewrite Pminus_mask_IsNeg; simpl; auto. subst q; rewrite Pminus_mask_carry_diag; auto. rewrite IHp; simpl; auto. Qed. Lemma Pminus_Lt : forall p q:positive, p p-q = xH. Proof. intros; unfold Plt, Pminus; rewrite Pminus_mask_Lt; auto. Qed. (** Number of digits in a number *) Fixpoint Psize (p:positive) : nat := match p with | xH => 1%nat | p~1 => S (Psize p) | p~0 => S (Psize p) end. Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat. Proof. assert (le0 : forall n:nat, (0<=n)%nat) by (induction n; auto). assert (leS : forall n m:nat, (n<=m)%nat -> (S n <= S m)%nat) by (induction 1; auto). induction p; destruct q; simpl; auto; intros; try discriminate. intros; generalize (Pcompare_Gt_Lt _ _ H); auto. intros; destruct (Pcompare_Lt_Lt _ _ H); auto; subst; auto. Qed.