(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Prop := JMeq_refl : JMeq x x. Set Elimination Schemes. Arguments JMeq_refl {A x} , [A] x. Hint Resolve JMeq_refl. Definition JMeq_hom {A : Type} (x y : A) := JMeq x y. Lemma JMeq_sym : forall (A B:Type) (x:A) (y:B), JMeq x y -> JMeq y x. Proof. intros; destruct H; trivial. Qed. Hint Immediate JMeq_sym. Lemma JMeq_trans : forall (A B C:Type) (x:A) (y:B) (z:C), JMeq x y -> JMeq y z -> JMeq x z. Proof. destruct 2; trivial. Qed. Axiom JMeq_eq : forall (A:Type) (x y:A), JMeq x y -> x = y. Lemma JMeq_ind : forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y, JMeq x y -> P y. Proof. intros A x P H y H'; case JMeq_eq with (1 := H'); trivial. Qed. Lemma JMeq_rec : forall (A:Type) (x:A) (P:A -> Set), P x -> forall y, JMeq x y -> P y. Proof. intros A x P H y H'; case JMeq_eq with (1 := H'); trivial. Qed. Lemma JMeq_rect : forall (A:Type) (x:A) (P:A->Type), P x -> forall y, JMeq x y -> P y. Proof. intros A x P H y H'; case JMeq_eq with (1 := H'); trivial. Qed. Lemma JMeq_ind_r : forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y, JMeq y x -> P y. Proof. intros A x P H y H'; case JMeq_eq with (1 := JMeq_sym H'); trivial. Qed. Lemma JMeq_rec_r : forall (A:Type) (x:A) (P:A -> Set), P x -> forall y, JMeq y x -> P y. Proof. intros A x P H y H'; case JMeq_eq with (1 := JMeq_sym H'); trivial. Qed. Lemma JMeq_rect_r : forall (A:Type) (x:A) (P:A -> Type), P x -> forall y, JMeq y x -> P y. Proof. intros A x P H y H'; case JMeq_eq with (1 := JMeq_sym H'); trivial. Qed. Lemma JMeq_congr : forall (A:Type) (x:A) (B:Type) (f:A->B) (y:A), JMeq x y -> f x = f y. Proof. intros A x B f y H; case JMeq_eq with (1 := H); trivial. Qed. (** [JMeq] is equivalent to [eq_dep Type (fun X => X)] *) Require Import Eqdep. Lemma JMeq_eq_dep_id : forall (A B:Type) (x:A) (y:B), JMeq x y -> eq_dep Type (fun X => X) A x B y. Proof. destruct 1. apply eq_dep_intro. Qed. Lemma eq_dep_id_JMeq : forall (A B:Type) (x:A) (y:B), eq_dep Type (fun X => X) A x B y -> JMeq x y. Proof. destruct 1. apply JMeq_refl. Qed. (** [eq_dep U P p x q y] is strictly finer than [JMeq (P p) x (P q) y] *) Lemma eq_dep_JMeq : forall U P p x q y, eq_dep U P p x q y -> JMeq x y. Proof. destruct 1. apply JMeq_refl. Qed. Lemma eq_dep_strictly_stronger_JMeq : exists U P p q x y, JMeq x y /\ ~ eq_dep U P p x q y. Proof. exists bool. exists (fun _ => True). exists true. exists false. exists I. exists I. split. trivial. intro H. assert (true=false) by (destruct H; reflexivity). discriminate. Qed. (** However, when the dependencies are equal, [JMeq (P p) x (P q) y] is as strong as [eq_dep U P p x q y] (this uses [JMeq_eq]) *) Lemma JMeq_eq_dep : forall U (P:U->Type) p q (x:P p) (y:P q), p = q -> JMeq x y -> eq_dep U P p x q y. Proof. intros. destruct H. apply JMeq_eq in H0 as ->. reflexivity. Qed. (* Compatibility *) Notation sym_JMeq := JMeq_sym (only parsing). Notation trans_JMeq := JMeq_trans (only parsing).