(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Type] which interprets each name into a type. This allows the encoding of universe to be decoupled from Coq's universes. Dependent products and abstractions are similarly postulated rather than encoded as Coq's dependent products and abstractions. *) Module Generic. (** Notations used in the proof. *) Reserved Notation "'∀₁' x : A , B" (at level 200, x ident, A at level 200,right associativity). Reserved Notation "A '⟶₁' B" (at level 99, right associativity, B at level 200). Reserved Notation "'λ₁' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₁' x" (at level 5, left associativity). Reserved Notation "'∀₂' A , F" (at level 200, A ident, right associativity). Reserved Notation "'λ₂' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₁' [ A ]" (at level 5, left associativity). Reserved Notation "'∀₀' x : A , B" (at level 200, x ident, A at level 200,right associativity). Reserved Notation "A '⟶₀' B" (at level 99, right associativity, B at level 200). Reserved Notation "'λ₀' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₀' x" (at level 5, left associativity). Reserved Notation "'∀₀¹' A : U , F" (at level 200, A ident, right associativity). Reserved Notation "'λ₀¹' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₀' [ A ]" (at level 5, left associativity). Section Paradox. (* arnaud: do some Coqdoc formatting *) (** Axiomatisation of impredicative universes in a Martin-Löf style *) (** System U- has two impredicative universes. In the proof of the paradox they are slightly asymetric (in particular the reduction rules of the small universe are not needed). Therefore, the axioms are duplicated allowing for a weaker requirement than the actual system U-. *) (** Large universe *) Variable U1 : Type. Variable El1 : U1 -> Type. (** Closure by small product *) Variable Forall1 : forall u:U1, (El1 u -> U1) -> U1. Notation "'∀₁' x : A , B" := (Forall1 A (fun x => B)). Notation "A '⟶₁' B" := (Forall1 A (fun _ => B)). Variable lam1 : forall u B, (forall x:El1 u, El1 (B x)) -> El1 (∀₁ x:u, B x). Notation "'λ₁' x , u" := (lam1 _ _ (fun x => u)). Variable app1 : forall u B (f:El1 (Forall1 u B)) (x:El1 u), El1 (B x). Notation "f '·₁' x" := (app1 _ _ f x). Variable beta1 : forall u B (f:forall x:El1 u, El1 (B x)) x, (λ₁ y, f y) ·₁ x = f x. (** Closure by large products ([U1] only needs to quantify over itself) *) Variable ForallU1 : (U1->U1) -> U1. Notation "'∀₂' A , F" := (ForallU1 (fun A => F)). Variable lamU1 : forall F, (forall A:U1, El1 (F A)) -> El1 (∀₂ A, F A). Notation "'λ₂' x , u" := (lamU1 _ (fun x => u)). Variable appU1 : forall F (f:El1(∀₂ A,F A)) (A:U1), El1 (F A). Notation "f '·₁' [ A ]" := (appU1 _ f A). Variable betaU1 : forall F (f:forall A:U1, El1 (F A)) A, (λ₂ x, f x) ·₁ [ A ] = f A. (** Small universe *) (** The small universe is an element of the large one. *) Variable u0 : U1. Notation U0 := (El1 u0). Variable El0 : U0 -> Type. (** Closure by small product, [U0] does not need reduction rules *) Variable Forall0 : forall u:U0, (El0 u -> U0) -> U0. Notation "'∀₀' x : A , B" := (Forall0 A (fun x => B)). Notation "A '⟶₀' B" := (Forall0 A (fun _ => B)). Variable lam0 : forall u B, (forall x:El0 u, El0 (B x)) -> El0 (∀₀ x:u, B x). Notation "'λ₀' x , u" := (lam0 _ _ (fun x => u)). Variable app0 : forall u B (f:El0 (Forall0 u B)) (x:El0 u), El0 (B x). Notation "f '·₀' x" := (app0 _ _ f x). (** Closure by large products *) Variable ForallU0 : forall u:U1, (El1 u->U0) -> U0. Notation "'∀₀¹' A : U , F" := (ForallU0 U (fun A => F)). Variable lamU0 : forall U F, (forall A:El1 U, El0 (F A)) -> El0 (∀₀¹ A:U, F A). Notation "'λ₀¹' x , u" := (lamU0 _ _ (fun x => u)). Variable appU0 : forall U F (f:El0(∀₀¹ A:U,F A)) (A:El1 U), El0 (F A). Notation "f '·₀' [ A ]" := (appU0 _ _ f A). (** Automating the rewrite rules of our encoding. *) Local Ltac simplify := (* spiwack: ideally we could use [rewrite_strategy] here, but I am a tad scared of the idea of depending on setoid rewrite in such a simple file. *) (repeat rewrite ?beta1, ?betaU1); lazy beta. Local Ltac simplify_in h := (repeat rewrite ?beta1, ?betaU1 in h); lazy beta in h. (** Hurkens's paradox. *) (** An inhabitant of [U0] standing for [False]. *) Variable F:U0. (** Preliminary definitions *) Definition V : U1 := ∀₂ A, ((A ⟶₁ u0) ⟶₁ A ⟶₁ u0) ⟶₁ A ⟶₁ u0. Definition U : U1 := V ⟶₁ u0. Definition sb (z:El1 V) : El1 V := λ₂ A, λ₁ r, λ₁ a, r ·₁ (z·₁[A]·₁r) ·₁ a. Definition le (i:El1 (U⟶₁u0)) (x:El1 U) : U0 := x ·₁ (λ₂ A, λ₁ r, λ₁ a, i ·₁ (λ₁ v, (sb v) ·₁ [A] ·₁ r ·₁ a)). Definition le' : El1 ((U⟶₁u0) ⟶₁ U ⟶₁ u0) := λ₁ i, λ₁ x, le i x. Definition induct (i:El1 (U⟶₁u0)) : U0 := ∀₀¹ x:U, le i x ⟶₀ i ·₁ x. Definition WF : El1 U := λ₁ z, (induct (z·₁[U] ·₁ le')). Definition I (x:El1 U) : U0 := (∀₀¹ i:U⟶₁u0, le i x ⟶₀ i ·₁ (λ₁ v, (sb v) ·₁ [U] ·₁ le' ·₁ x)) ⟶₀ F . (** Proof *) Lemma Omega : El0 (∀₀¹ i:U⟶₁u0, induct i ⟶₀ i ·₁ WF). Proof. refine (λ₀¹ i, λ₀ y, _). refine (y·₀[_]·₀_). unfold le,WF,induct. simplify. refine (λ₀¹ x, λ₀ h0, _). simplify. refine (y·₀[_]·₀_). unfold le. simplify. unfold sb at 1. simplify. unfold le' at 1. simplify. exact h0. Qed. Lemma lemma1 : El0 (induct (λ₁ u, I u)). Proof. unfold induct. refine (λ₀¹ x, λ₀ p, _). simplify. refine (λ₀ q,_). assert (El0 (I (λ₁ v, (sb v)·₁[U]·₁le'·₁x))) as h. { generalize (q·₀[λ₁ u, I u]·₀p). simplify. intros q'. exact q'. } refine (h·₀_). refine (λ₀¹ i,_). refine (λ₀ h', _). generalize (q·₀[λ₁ y, i ·₁ (λ₁ v, (sb v)·₁[U] ·₁ le' ·₁ y)]). simplify. intros q'. refine (q'·₀_). clear q'. unfold le at 1 in h'. simplify_in h'. unfold sb at 1 in h'. simplify_in h'. unfold le' at 1 in h'. simplify_in h'. exact h'. Qed. Lemma lemma2 : El0 ((∀₀¹i:U⟶₁u0, induct i ⟶₀ i·₁WF) ⟶₀ F). Proof. refine (λ₀ x, _). assert (El0 (I WF)) as h. { generalize (x·₀[λ₁ u, I u]·₀lemma1). simplify. intros q. exact q. } refine (h·₀_). clear h. refine (λ₀¹ i, λ₀ h0, _). generalize (x·₀[λ₁ y, i·₁(λ₁ v, (sb v)·₁[U]·₁le'·₁y)]). simplify. intros q. refine (q·₀_). clear q. unfold le in h0. simplify_in h0. unfold WF in h0. simplify_in h0. exact h0. Qed. Theorem paradox : El0 F. Proof. exact (lemma2·₀Omega). Qed. End Paradox. Ltac paradox h := refine ((fun h => _) (paradox _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ));cycle 1. End Generic. (** There can be no retract to an impredicative Coq universe from a smaller type. In this version of the proof, the impredicativity of the universe is postulated with a pair of functions from the universe to its type and back which commute with dependent product in an appropriate way. *) Module NoRetractToImpredicativeUniverse. Section Paradox. Let U2 := Type. Let U1:U2 := Type. Variable U0:U1. (** [U1] is impredicative *) Variable u22u1 : U2 -> U1. Hypothesis u22u1_unit : forall (c:U2), c -> u22u1 c. (** [u22u1_counit] and [u22u1_coherent] only apply to dependent product so that the equations happen in the smaller [U1] rather than [U2]. Indeed, it is not generally the case that one can project from a large universe to an impredicative universe and then get back the original type again. It would be too strong a hypothesis to require (in particular, it is not true of [Prop]). The formulation is reminiscent of the monadic characteristic of the projection from a large type to [Prop].*) Hypothesis u22u1_counit : forall (F:U1->U1), u22u1 (forall A,F A) -> (forall A,F A). Hypothesis u22u1_coherent : forall (F:U1 -> U1) (f:forall x:U1, F x) (x:U1), u22u1_counit _ (u22u1_unit _ f) x = f x. (** [U0] is a retract of [U1] *) Variable u02u1 : U0 -> U1. Variable u12u0 : U1 -> U0. Hypothesis u12u0_unit : forall (b:U1), b -> u02u1 (u12u0 b). Hypothesis u12u0_counit : forall (b:U1), u02u1 (u12u0 b) -> b. (** Paradox *) Theorem paradox : forall F:U1, F. Proof. intros F. Generic.paradox h. (** Large universe *) + exact U1. + exact (fun X => X). + cbn. exact (fun u F => forall x:u, F x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. easy. + cbn. exact (fun F => u22u1 (forall x, F x)). + cbn. exact (fun _ x => u22u1_unit _ x). + cbn. exact (fun _ x => u22u1_counit _ x). + cbn. intros **. now rewrite u22u1_coherent. (** Small universe *) + exact U0. (** The interpretation of the small universe is the image of [U0] in [U1]. *) + cbn. exact (fun X => u02u1 X). + cbn. exact (fun u F => u12u0 (forall x:(u02u1 u), u02u1 (F x))). + cbn. intros * x. exact (u12u0_unit _ x). + cbn. intros * x. exact (u12u0_counit _ x). + cbn. exact (fun u F => u12u0 (forall x:u, u02u1 (F x))). + cbn. intros * x. exact (u12u0_unit _ x). + cbn. intros * x. exact (u12u0_counit _ x). + cbn. exact (u12u0 F). + cbn in h. exact (u12u0_counit _ h). Qed. End Paradox. End NoRetractToImpredicativeUniverse. (** * Inconsistency of the existence in the pure Calculus of Constructions of a retract from Prop into a small type of Prop *) Module NoRetractFromSmallPropositionToProp. Section Paradox. (** Assumption of a retract from Prop to a small type in Prop, using *) (* equivalence as the equality on propositions *) Variable bool : Prop. Variable p2b : Prop -> bool. Variable b2p : bool -> Prop. Hypothesis p2p1 : forall A:Prop, b2p (p2b A) -> A. Hypothesis p2p2 : forall A:Prop, A -> b2p (p2b A). Theorem paradox : forall B:Prop, B. Proof. intros B. pose proof (NoRetractToImpredicativeUniverse.paradox@{Type Prop}) as P. refine (P _ _ _ _ _ _ _ _ _ _);clear P. + exact bool. + exact (fun x => forall P:Prop, (x->P)->P). + cbn. exact (fun _ x P k => k x). + cbn. intros F P x. apply P. intros f. exact (f x). + cbn. easy. + exact b2p. + exact p2b. + exact p2p2. + exact p2p1. Qed. End Paradox. End NoRetractFromSmallPropositionToProp. (** * Inconsistency of the existence in the Calculus of Constructions with universes of a retract from some Type universe into Prop. *) (** Note: Assuming the context [down:Type->Prop; up:Prop->Type; forth: forall (A:Type), A -> up (down A); back: forall (A:Type), up (down A) -> A; H: forall (A:Type) (P:A->Type) (a:A), P (back A (forth A a)) -> P a] is probably enough. *) Module NoRetractFromTypeToProp. Definition Type2 := Type. Definition Type1 := Type : Type2. Section Paradox. (** Assumption of a retract from Type into Prop *) Variable down : Type1 -> Prop. Variable up : Prop -> Type1. Hypothesis up_down : forall (A:Type1), up (down A) = A :> Type1. Theorem paradox : forall P:Prop, P. Proof. intros P. Generic.paradox h. (** Large universe. *) + exact Type1. + exact (fun X => X). + cbn. exact (fun u F => forall x, F x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. easy. + exact (fun F => forall A:Prop, F(up A)). + cbn. exact (fun F f A => f (up A)). + cbn. intros F f A. specialize (f (down A)). rewrite up_down in f. exact f. + cbn. intros F f A. destruct (up_down A). cbn. reflexivity. + exact Prop. + cbn. exact (fun X => X). + cbn. exact (fun A P => forall x:A, P x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun A P => forall x:A, P x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. exact P. + exact h. Qed. End Paradox. End NoRetractFromTypeToProp. (** Application: Prop<>Type for some given Type *) Module PropNeqType. Import NoRetractFromTypeToProp. Section Paradox. Notation "'rew2' <- H 'in' H'" := (@eq_rect_r Type2 _ (fun X : Type2 => X) H' _ H) (at level 10, H' at level 10). Notation "'rew2' H 'in' H'" := (@eq_rect Type2 _ (fun X : Type2 => X) H' _ H) (at level 10, H' at level 10). Variable Heq : Prop = Type1 :> Type2. Definition down : Type1 -> Prop := fun A => rew2 <- Heq in A. Definition up : Prop -> Type1 := fun A => rew2 Heq in A. Lemma up_down : forall (A:Type1), up (down A) = A :> Type1. Proof. unfold up, down. rewrite Heq. reflexivity. Defined. Theorem paradox : False. Proof. apply paradox with down up. apply up_down. Qed. End Paradox. End PropNeqType.