(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A]) cannot be a retract of a modal proposition. It is an example of use of the paradox where the universes of system U- are not mapped to universes of Coq. - The [NoRetractToNegativeProp] module is the specialisation of the [NoRetractFromSmallPropositionToProp] module where the modality is double-negation. This result implies that the principle of weak excluded middle ([forall A, ~~A\/~A]) implies a weak variant of proof irrelevance. - The [NoRetractFromTypeToProp] module proves that [Prop] cannot be a retract of a larger type. - The [TypeNeqSmallType] module proves that [Type] is different from any smaller type. - The [PropNeqType] module proves that [Prop] is different from any larger [Type]. It is an instance of the previous result. References: - [[Coquand90]] T. Coquand, "Metamathematical Investigations of a Calculus of Constructions", Proceedings of Logic in Computer Science (LICS'90), 1990. - [[Hurkens95]] A. J. Hurkens, "A simplification of Girard's paradox", Proceedings of the 2nd international conference Typed Lambda-Calculi and Applications (TLCA'95), 1995. - [[Geuvers01]] H. Geuvers, "Inconsistency of Classical Logic in Type Theory", 2001, revised 2007 (see {{http://www.cs.ru.nl/~herman/PUBS/newnote.ps.gz}}). *) Set Universe Polymorphism. (* begin show *) (** * A modular proof of Hurkens's paradox. *) (** It relies on an axiomatisation of a shallow embedding of system U- (i.e. types of U- are interpreted by types of Coq). The universes are encoded in a style, due to Martin-Löf, where they are given by a set of names and a family [El:Name->Type] which interprets each name into a type. This allows the encoding of universe to be decoupled from Coq's universes. Dependent products and abstractions are similarly postulated rather than encoded as Coq's dependent products and abstractions. *) Module Generic. (* begin hide *) (* Notations used in the proof. Hidden in coqdoc. *) Reserved Notation "'∀₁' x : A , B" (at level 200, x ident, A at level 200,right associativity). Reserved Notation "A '⟶₁' B" (at level 99, right associativity, B at level 200). Reserved Notation "'λ₁' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₁' x" (at level 5, left associativity). Reserved Notation "'∀₂' A , F" (at level 200, A ident, right associativity). Reserved Notation "'λ₂' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₁' [ A ]" (at level 5, left associativity). Reserved Notation "'∀₀' x : A , B" (at level 200, x ident, A at level 200,right associativity). Reserved Notation "A '⟶₀' B" (at level 99, right associativity, B at level 200). Reserved Notation "'λ₀' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₀' x" (at level 5, left associativity). Reserved Notation "'∀₀¹' A : U , F" (at level 200, A ident, right associativity). Reserved Notation "'λ₀¹' x , u" (at level 200, x ident, right associativity). Reserved Notation "f '·₀' [ A ]" (at level 5, left associativity). (* end hide *) Section Paradox. (** ** Axiomatisation of impredicative universes in a Martin-Löf style *) (** System U- has two impredicative universes. In the proof of the paradox they are slightly asymmetric (in particular the reduction rules of the small universe are not needed). Therefore, the axioms are duplicated allowing for a weaker requirement than the actual system U-. *) (** *** Large universe *) Variable U1 : Type. Variable El1 : U1 -> Type. (** **** Closure by small product *) Variable Forall1 : forall u:U1, (El1 u -> U1) -> U1. Notation "'∀₁' x : A , B" := (Forall1 A (fun x => B)). Notation "A '⟶₁' B" := (Forall1 A (fun _ => B)). Variable lam1 : forall u B, (forall x:El1 u, El1 (B x)) -> El1 (∀₁ x:u, B x). Notation "'λ₁' x , u" := (lam1 _ _ (fun x => u)). Variable app1 : forall u B (f:El1 (Forall1 u B)) (x:El1 u), El1 (B x). Notation "f '·₁' x" := (app1 _ _ f x). Variable beta1 : forall u B (f:forall x:El1 u, El1 (B x)) x, (λ₁ y, f y) ·₁ x = f x. (** **** Closure by large products *) (** [U1] only needs to quantify over itself. *) Variable ForallU1 : (U1->U1) -> U1. Notation "'∀₂' A , F" := (ForallU1 (fun A => F)). Variable lamU1 : forall F, (forall A:U1, El1 (F A)) -> El1 (∀₂ A, F A). Notation "'λ₂' x , u" := (lamU1 _ (fun x => u)). Variable appU1 : forall F (f:El1(∀₂ A,F A)) (A:U1), El1 (F A). Notation "f '·₁' [ A ]" := (appU1 _ f A). Variable betaU1 : forall F (f:forall A:U1, El1 (F A)) A, (λ₂ x, f x) ·₁ [ A ] = f A. (** *** Small universe *) (** The small universe is an element of the large one. *) Variable u0 : U1. Notation U0 := (El1 u0). Variable El0 : U0 -> Type. (** **** Closure by small product *) (** [U0] does not need reduction rules *) Variable Forall0 : forall u:U0, (El0 u -> U0) -> U0. Notation "'∀₀' x : A , B" := (Forall0 A (fun x => B)). Notation "A '⟶₀' B" := (Forall0 A (fun _ => B)). Variable lam0 : forall u B, (forall x:El0 u, El0 (B x)) -> El0 (∀₀ x:u, B x). Notation "'λ₀' x , u" := (lam0 _ _ (fun x => u)). Variable app0 : forall u B (f:El0 (Forall0 u B)) (x:El0 u), El0 (B x). Notation "f '·₀' x" := (app0 _ _ f x). (** **** Closure by large products *) Variable ForallU0 : forall u:U1, (El1 u->U0) -> U0. Notation "'∀₀¹' A : U , F" := (ForallU0 U (fun A => F)). Variable lamU0 : forall U F, (forall A:El1 U, El0 (F A)) -> El0 (∀₀¹ A:U, F A). Notation "'λ₀¹' x , u" := (lamU0 _ _ (fun x => u)). Variable appU0 : forall U F (f:El0(∀₀¹ A:U,F A)) (A:El1 U), El0 (F A). Notation "f '·₀' [ A ]" := (appU0 _ _ f A). (** ** Automating the rewrite rules of our encoding. *) Local Ltac simplify := (* spiwack: ideally we could use [rewrite_strategy] here, but I am a tad scared of the idea of depending on setoid rewrite in such a simple file. *) (repeat rewrite ?beta1, ?betaU1); lazy beta. Local Ltac simplify_in h := (repeat rewrite ?beta1, ?betaU1 in h); lazy beta in h. (** ** Hurkens's paradox. *) (** An inhabitant of [U0] standing for [False]. *) Variable F:U0. (** *** Preliminary definitions *) Definition V : U1 := ∀₂ A, ((A ⟶₁ u0) ⟶₁ A ⟶₁ u0) ⟶₁ A ⟶₁ u0. Definition U : U1 := V ⟶₁ u0. Definition sb (z:El1 V) : El1 V := λ₂ A, λ₁ r, λ₁ a, r ·₁ (z·₁[A]·₁r) ·₁ a. Definition le (i:El1 (U⟶₁u0)) (x:El1 U) : U0 := x ·₁ (λ₂ A, λ₁ r, λ₁ a, i ·₁ (λ₁ v, (sb v) ·₁ [A] ·₁ r ·₁ a)). Definition le' : El1 ((U⟶₁u0) ⟶₁ U ⟶₁ u0) := λ₁ i, λ₁ x, le i x. Definition induct (i:El1 (U⟶₁u0)) : U0 := ∀₀¹ x:U, le i x ⟶₀ i ·₁ x. Definition WF : El1 U := λ₁ z, (induct (z·₁[U] ·₁ le')). Definition I (x:El1 U) : U0 := (∀₀¹ i:U⟶₁u0, le i x ⟶₀ i ·₁ (λ₁ v, (sb v) ·₁ [U] ·₁ le' ·₁ x)) ⟶₀ F . (** *** Proof *) Lemma Omega : El0 (∀₀¹ i:U⟶₁u0, induct i ⟶₀ i ·₁ WF). Proof. refine (λ₀¹ i, λ₀ y, _). refine (y·₀[_]·₀_). unfold le,WF,induct. simplify. refine (λ₀¹ x, λ₀ h0, _). simplify. refine (y·₀[_]·₀_). unfold le. simplify. unfold sb at 1. simplify. unfold le' at 1. simplify. exact h0. Qed. Lemma lemma1 : El0 (induct (λ₁ u, I u)). Proof. unfold induct. refine (λ₀¹ x, λ₀ p, _). simplify. refine (λ₀ q,_). assert (El0 (I (λ₁ v, (sb v)·₁[U]·₁le'·₁x))) as h. { generalize (q·₀[λ₁ u, I u]·₀p). simplify. intros q'. exact q'. } refine (h·₀_). refine (λ₀¹ i,_). refine (λ₀ h', _). generalize (q·₀[λ₁ y, i ·₁ (λ₁ v, (sb v)·₁[U] ·₁ le' ·₁ y)]). simplify. intros q'. refine (q'·₀_). clear q'. unfold le at 1 in h'. simplify_in h'. unfold sb at 1 in h'. simplify_in h'. unfold le' at 1 in h'. simplify_in h'. exact h'. Qed. Lemma lemma2 : El0 ((∀₀¹i:U⟶₁u0, induct i ⟶₀ i·₁WF) ⟶₀ F). Proof. refine (λ₀ x, _). assert (El0 (I WF)) as h. { generalize (x·₀[λ₁ u, I u]·₀lemma1). simplify. intros q. exact q. } refine (h·₀_). clear h. refine (λ₀¹ i, λ₀ h0, _). generalize (x·₀[λ₁ y, i·₁(λ₁ v, (sb v)·₁[U]·₁le'·₁y)]). simplify. intros q. refine (q·₀_). clear q. unfold le in h0. simplify_in h0. unfold WF in h0. simplify_in h0. exact h0. Qed. Theorem paradox : El0 F. Proof. exact (lemma2·₀Omega). Qed. End Paradox. (** The [paradox] tactic can be called as a shortcut to use the paradox. *) Ltac paradox h := unshelve (refine ((fun h => _) (paradox _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ))). End Generic. (** * Impredicative universes are not retracts. *) (** There can be no retract to an impredicative Coq universe from a smaller type. In this version of the proof, the impredicativity of the universe is postulated with a pair of functions from the universe to its type and back which commute with dependent product in an appropriate way. *) Module NoRetractToImpredicativeUniverse. Section Paradox. Let U2 := Type. Let U1:U2 := Type. Variable U0:U1. (** *** [U1] is impredicative *) Variable u22u1 : U2 -> U1. Hypothesis u22u1_unit : forall (c:U2), c -> u22u1 c. (** [u22u1_counit] and [u22u1_coherent] only apply to dependent product so that the equations happen in the smaller [U1] rather than [U2]. Indeed, it is not generally the case that one can project from a large universe to an impredicative universe and then get back the original type again. It would be too strong a hypothesis to require (in particular, it is not true of [Prop]). The formulation is reminiscent of the monadic characteristic of the projection from a large type to [Prop].*) Hypothesis u22u1_counit : forall (F:U1->U1), u22u1 (forall A,F A) -> (forall A,F A). Hypothesis u22u1_coherent : forall (F:U1 -> U1) (f:forall x:U1, F x) (x:U1), u22u1_counit _ (u22u1_unit _ f) x = f x. (** *** [U0] is a retract of [U1] *) Variable u02u1 : U0 -> U1. Variable u12u0 : U1 -> U0. Hypothesis u12u0_unit : forall (b:U1), b -> u02u1 (u12u0 b). Hypothesis u12u0_counit : forall (b:U1), u02u1 (u12u0 b) -> b. (** ** Paradox *) Theorem paradox : forall F:U1, F. Proof. intros F. Generic.paradox h. (** Large universe *) + exact U1. + exact (fun X => X). + cbn. exact (fun u F => forall x:u, F x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun F => u22u1 (forall x, F x)). + cbn. exact (fun _ x => u22u1_unit _ x). + cbn. exact (fun _ x => u22u1_counit _ x). (** Small universe *) + exact U0. (** The interpretation of the small universe is the image of [U0] in [U1]. *) + cbn. exact (fun X => u02u1 X). + cbn. exact (fun u F => u12u0 (forall x:(u02u1 u), u02u1 (F x))). + cbn. exact (fun u F => u12u0 (forall x:u, u02u1 (F x))). + cbn. exact (u12u0 F). + cbn in h. exact (u12u0_counit _ h). + cbn. easy. + cbn. intros **. now rewrite u22u1_coherent. + cbn. intros * x. exact (u12u0_unit _ x). + cbn. intros * x. exact (u12u0_counit _ x). + cbn. intros * x. exact (u12u0_unit _ x). + cbn. intros * x. exact (u12u0_counit _ x). Qed. End Paradox. End NoRetractToImpredicativeUniverse. (** * Modal fragments of [Prop] are not retracts *) (** In presence of a a monadic modality on [Prop], we can define a subset of [Prop] of modal propositions which is also a complete Heyting algebra. These cannot be a retract of a modal proposition. This is a case where the universe in system U- are not encoded as Coq universes. *) Module NoRetractToModalProposition. (** ** Monadic modality *) Section Paradox. Variable M : Prop -> Prop. Hypothesis unit : forall A:Prop, A -> M A. Hypothesis join : forall A:Prop, M (M A) -> M A. Hypothesis incr : forall A B:Prop, (A->B) -> M A -> M B. Lemma strength: forall A (P:A->Prop), M(forall x:A,P x) -> forall x:A,M(P x). Proof. eauto. Qed. (** ** The universe of modal propositions *) Definition MProp := { P:Prop | M P -> P }. Definition El : MProp -> Prop := @proj1_sig _ _. Lemma modal : forall P:MProp, M(El P) -> El P. Proof. intros [P m]. cbn. exact m. Qed. Definition Forall {A:Type} (P:A->MProp) : MProp. Proof. unshelve (refine (exist _ _ _)). + exact (forall x:A, El (P x)). + intros h x. eapply strength in h. eauto using modal. Defined. (** ** Retract of the modal fragment of [Prop] in a small type *) (** The retract is axiomatized using logical equivalence as the equality on propositions. *) Variable bool : MProp. Variable p2b : MProp -> El bool. Variable b2p : El bool -> MProp. Hypothesis p2p1 : forall A:MProp, El (b2p (p2b A)) -> El A. Hypothesis p2p2 : forall A:MProp, El A -> El (b2p (p2b A)). (** ** Paradox *) Theorem paradox : forall B:MProp, El B. Proof. intros B. Generic.paradox h. (** Large universe *) + exact MProp. + exact El. + exact (fun _ => Forall). + cbn. exact (fun _ _ f => f). + cbn. exact (fun _ _ f => f). + exact Forall. + cbn. exact (fun _ f => f). + cbn. exact (fun _ f => f). (** Small universe *) + exact bool. + exact (fun b => El (b2p b)). + cbn. exact (fun _ F => p2b (Forall (fun x => b2p (F x)))). + exact (fun _ F => p2b (Forall (fun x => b2p (F x)))). + apply p2b. exact B. + cbn in h. auto. + cbn. easy. + cbn. easy. + cbn. auto. + cbn. intros * f. apply p2p1 in f. cbn in f. exact f. + cbn. auto. + cbn. intros * f. apply p2p1 in f. cbn in f. exact f. Qed. End Paradox. End NoRetractToModalProposition. (** * The negative fragment of [Prop] is not a retract *) (** The existence in the pure Calculus of Constructions of a retract from the negative fragment of [Prop] into a negative proposition is inconsistent. This is an instance of the previous result. *) Module NoRetractToNegativeProp. (** ** The universe of negative propositions. *) Definition NProp := { P:Prop | ~~P -> P }. Definition El : NProp -> Prop := @proj1_sig _ _. Section Paradox. (** ** Retract of the negative fragment of [Prop] in a small type *) (** The retract is axiomatized using logical equivalence as the equality on propositions. *) Variable bool : NProp. Variable p2b : NProp -> El bool. Variable b2p : El bool -> NProp. Hypothesis p2p1 : forall A:NProp, El (b2p (p2b A)) -> El A. Hypothesis p2p2 : forall A:NProp, El A -> El (b2p (p2b A)). (** ** Paradox *) Theorem paradox : forall B:NProp, El B. Proof. intros B. unshelve (refine ((fun h => _) (NoRetractToModalProposition.paradox _ _ _ _ _ _ _ _ _ _))). + exact (fun P => ~~P). + exact bool. + exact p2b. + exact b2p. + exact B. + exact h. + cbn. auto. + cbn. auto. + cbn. auto. + auto. + auto. Qed. End Paradox. End NoRetractToNegativeProp. (** * Prop is not a retract *) (** The existence in the pure Calculus of Constructions of a retract from [Prop] into a small type of [Prop] is inconsistent. This is a special case of the previous result. *) Module NoRetractFromSmallPropositionToProp. (** ** The universe of propositions. *) Definition NProp := { P:Prop | P -> P}. Definition El : NProp -> Prop := @proj1_sig _ _. Section MParadox. (** ** Retract of [Prop] in a small type, using the identity modality. *) Variable bool : NProp. Variable p2b : NProp -> El bool. Variable b2p : El bool -> NProp. Hypothesis p2p1 : forall A:NProp, El (b2p (p2b A)) -> El A. Hypothesis p2p2 : forall A:NProp, El A -> El (b2p (p2b A)). (** ** Paradox *) Theorem mparadox : forall B:NProp, El B. Proof. intros B. unshelve (refine ((fun h => _) (NoRetractToModalProposition.paradox _ _ _ _ _ _ _ _ _ _))). + exact (fun P => P). + exact bool. + exact p2b. + exact b2p. + exact B. + exact h. + cbn. auto. + cbn. auto. + cbn. auto. + auto. + auto. Qed. End MParadox. Section Paradox. (** ** Retract of [Prop] in a small type *) (** The retract is axiomatized using logical equivalence as the equality on propositions. *) Variable bool : Prop. Variable p2b : Prop -> bool. Variable b2p : bool -> Prop. Hypothesis p2p1 : forall A:Prop, b2p (p2b A) -> A. Hypothesis p2p2 : forall A:Prop, A -> b2p (p2b A). (** ** Paradox *) Theorem paradox : forall B:Prop, B. Proof. intros B. unshelve (refine (mparadox (exist _ bool (fun x => x)) _ _ _ _ (exist _ B (fun x => x)))). + intros p. red. red. exact (p2b (El p)). + cbn. intros b. red. exists (b2p b). exact (fun x => x). + cbn. intros [A H]. cbn. apply p2p1. + cbn. intros [A H]. cbn. apply p2p2. Qed. End Paradox. End NoRetractFromSmallPropositionToProp. (** * Large universes are not retracts of [Prop]. *) (** The existence in the Calculus of Constructions with universes of a retract from some [Type] universe into [Prop] is inconsistent. *) (* Note: Assuming the context [down:Type->Prop; up:Prop->Type; forth: forall (A:Type), A -> up (down A); back: forall (A:Type), up (down A) -> A; H: forall (A:Type) (P:A->Type) (a:A), P (back A (forth A a)) -> P a] is probably enough. *) Module NoRetractFromTypeToProp. Definition Type2 := Type. Definition Type1 := Type : Type2. Section Paradox. (** ** Assumption of a retract from Type into Prop *) Variable down : Type1 -> Prop. Variable up : Prop -> Type1. Hypothesis up_down : forall (A:Type1), up (down A) = A :> Type1. (** ** Paradox *) Theorem paradox : forall P:Prop, P. Proof. intros P. Generic.paradox h. (** Large universe. *) + exact Type1. + exact (fun X => X). + cbn. exact (fun u F => forall x, F x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + exact (fun F => forall A:Prop, F(up A)). + cbn. exact (fun F f A => f (up A)). + cbn. intros F f A. specialize (f (down A)). rewrite up_down in f. exact f. + exact Prop. + cbn. exact (fun X => X). + cbn. exact (fun A P => forall x:A, P x). + cbn. exact (fun A P => forall x:A, P x). + cbn. exact P. + exact h. + cbn. easy. + cbn. intros F f A. destruct (up_down A). cbn. reflexivity. + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). Qed. End Paradox. End NoRetractFromTypeToProp. (** * [A<>Type] *) (** No Coq universe can be equal to one of its elements. *) Module TypeNeqSmallType. Unset Universe Polymorphism. Section Paradox. (** ** Universe [U] is equal to one of its elements. *) Let U := Type. Variable A:U. Hypothesis h : U=A. (** ** Universe [U] is a retract of [A] *) (** The following context is actually sufficient for the paradox to hold. The hypothesis [h:U=A] is only used to define [down], [up] and [up_down]. *) Let down (X:U) : A := @eq_rect _ _ (fun X => X) X _ h. Let up (X:A) : U := @eq_rect_r _ _ (fun X => X) X _ h. Lemma up_down : forall (X:U), up (down X) = X. Proof. unfold up,down. rewrite <- h. reflexivity. Qed. Theorem paradox : False. Proof. Generic.paradox p. (** Large universe *) + exact U. + exact (fun X=>X). + cbn. exact (fun X F => forall x:X, F x). + cbn. exact (fun _ _ x => x). + cbn. exact (fun _ _ x => x). + exact (fun F => forall x:A, F (up x)). + cbn. exact (fun _ f => fun x:A => f (up x)). + cbn. intros * f X. specialize (f (down X)). rewrite up_down in f. exact f. (** Small universe *) + exact A. (** The interpretation of [A] as a universe is [U]. *) + cbn. exact up. + cbn. exact (fun _ F => down (forall x, up (F x))). + cbn. exact (fun _ F => down (forall x, up (F x))). + cbn. exact (down False). + rewrite up_down in p. exact p. + cbn. easy. + cbn. intros ? f X. destruct (up_down X). cbn. reflexivity. + cbn. intros ? ? f. rewrite up_down. exact f. + cbn. intros ? ? f. rewrite up_down in f. exact f. + cbn. intros ? ? f. rewrite up_down. exact f. + cbn. intros ? ? f. rewrite up_down in f. exact f. Qed. End Paradox. End TypeNeqSmallType. (** * [Prop<>Type]. *) (** Special case of [TypeNeqSmallType]. *) Module PropNeqType. Theorem paradox : Prop <> Type. Proof. intros h. unshelve (refine (TypeNeqSmallType.paradox _ _)). + exact Prop. + easy. Qed. End PropNeqType. (* end show *)