(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Prop), inhabited A -> { x : A | (exists x, P x) -> P x }. Lemma constructive_indefinite_description : forall (A : Type) (P : A->Prop), (exists x, P x) -> { x : A | P x }. Proof. apply epsilon_imp_constructive_indefinite_description. exact epsilon_statement. Qed. Lemma small_drinkers'_paradox : forall (A:Type) (P:A -> Prop), inhabited A -> exists x, (exists x, P x) -> P x. Proof. apply epsilon_imp_small_drinker. exact epsilon_statement. Qed. Theorem iota_statement : forall (A : Type) (P : A->Prop), inhabited A -> { x : A | (exists! x : A, P x) -> P x }. Proof. intros; destruct epsilon_statement with (P:=P); firstorder. Qed. Lemma constructive_definite_description : forall (A : Type) (P : A->Prop), (exists! x, P x) -> { x : A | P x }. Proof. apply iota_imp_constructive_definite_description. exact iota_statement. Qed. (** Hilbert's epsilon operator and its specification *) Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A := proj1_sig (epsilon_statement P i). Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) : (exists x, P x) -> P (epsilon i P) := proj2_sig (epsilon_statement P i). (** Church's iota operator and its specification *) Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A := proj1_sig (iota_statement P i). Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) : (exists! x:A, P x) -> P (iota i P) := proj2_sig (iota_statement P i).