Definition decidable := [P:Prop] P \/ ~P. Theorem dec_not_not : (P:Prop)(decidable P) -> (~P -> False) -> P. Unfold decidable; Tauto. Save. Theorem dec_True: (decidable True). Unfold decidable; Auto. Save. Theorem dec_False: (decidable False). Unfold decidable not; Auto. Save. Theorem dec_or: (A,B:Prop)(decidable A) -> (decidable B) -> (decidable (A\/B)). Unfold decidable; Tauto. Save. Theorem dec_and: (A,B:Prop)(decidable A) -> (decidable B) ->(decidable (A/\B)). Unfold decidable; Tauto. Save. Theorem dec_not: (A:Prop)(decidable A) -> (decidable ~A). Unfold decidable; Tauto. Save. Theorem dec_imp: (A,B:Prop)(decidable A) -> (decidable B) ->(decidable (A->B)). Unfold decidable; Tauto. Save. Theorem not_not : (P:Prop)(decidable P) -> (~(~P)) -> P. Unfold decidable; Tauto. Save. Theorem not_or : (A,B:Prop) ~(A\/B) -> ~A /\ ~B. Tauto. Save. Theorem not_and : (A,B:Prop) (decidable A) -> ~(A/\B) -> ~A \/ ~B. Unfold decidable; Tauto. Save. Theorem not_imp : (A,B:Prop) (decidable A) -> ~(A -> B) -> A /\ ~B. Unfold decidable;Tauto. Save. Theorem imp_simp : (A,B:Prop) (decidable A) -> (A -> B) -> ~A \/ B. Unfold decidable; Tauto. Save.