(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* p. Proof. unfold not; intros; elim (classic p); auto. intro NP; elim (H NP). Qed. (** Peirce's law states [forall P Q:Prop, ((P -> Q) -> P) -> P]. Thanks to [forall P, False -> P], it is equivalent to the following form *) Lemma Peirce : forall P:Prop, ((P -> False) -> P) -> P. Proof. intros P H; destruct (classic P); auto. Qed. Lemma not_imply_elim : forall P Q:Prop, ~ (P -> Q) -> P. Proof. intros; apply NNPP; red. intro; apply H; intro; absurd P; trivial. Qed. Lemma not_imply_elim2 : forall P Q:Prop, ~ (P -> Q) -> ~ Q. Proof. (* Intuitionistic *) tauto. Qed. Lemma imply_to_or : forall P Q:Prop, (P -> Q) -> ~ P \/ Q. Proof. intros; elim (classic P); auto. Qed. Lemma imply_to_and : forall P Q:Prop, ~ (P -> Q) -> P /\ ~ Q. Proof. intros; split. apply not_imply_elim with Q; trivial. apply not_imply_elim2 with P; trivial. Qed. Lemma or_to_imply : forall P Q:Prop, ~ P \/ Q -> P -> Q. Proof. (* Intuitionistic *) tauto. Qed. Lemma not_and_or : forall P Q:Prop, ~ (P /\ Q) -> ~ P \/ ~ Q. Proof. intros; elim (classic P); auto. Qed. Lemma or_not_and : forall P Q:Prop, ~ P \/ ~ Q -> ~ (P /\ Q). Proof. simple induction 1; red; simple induction 2; auto. Qed. Lemma not_or_and : forall P Q:Prop, ~ (P \/ Q) -> ~ P /\ ~ Q. Proof. (* Intuitionistic *) tauto. Qed. Lemma and_not_or : forall P Q:Prop, ~ P /\ ~ Q -> ~ (P \/ Q). Proof. (* Intuitionistic *) tauto. Qed. Lemma imply_and_or : forall P Q:Prop, (P -> Q) -> P \/ Q -> Q. Proof. (* Intuitionistic *) tauto. Qed. Lemma imply_and_or2 : forall P Q R:Prop, (P -> Q) -> P \/ R -> Q \/ R. Proof. (* Intuitionistic *) tauto. Qed. Lemma proof_irrelevance : forall (P:Prop) (p1 p2:P), p1 = p2. Proof proof_irrelevance_cci classic. (* classical_left transforms |- A \/ B into ~B |- A *) (* classical_right transforms |- A \/ B into ~A |- B *) Ltac classical_right := match goal with |- ?X \/ _ => (elim (classic X);intro;[left;trivial|right]) end. Ltac classical_left := match goal with |- _ \/ ?X => (elim (classic X);intro;[right;trivial|left]) end. Require Export EqdepFacts. Module Eq_rect_eq. Lemma eq_rect_eq : forall (U:Type) (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h. Proof. intros; rewrite proof_irrelevance with (p1:=h) (p2:=eq_refl p); reflexivity. Qed. End Eq_rect_eq. Module EqdepTheory := EqdepTheory(Eq_rect_eq). Export EqdepTheory.