(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Prop), (exists x, P x) -> { x : A | P x }. Lemma constructive_definite_description : forall (A : Type) (P : A->Prop), (exists! x, P x) -> { x : A | P x }. Proof. intros; apply constructive_indefinite_description; firstorder. Qed. Theorem excluded_middle_informative : forall P:Prop, {P} + {~ P}. Proof. apply (constructive_definite_descr_excluded_middle constructive_definite_description classic). Qed. Theorem classical_indefinite_description : forall (A : Type) (P : A->Prop), inhabited A -> { x : A | (exists x, P x) -> P x }. Proof. intros A P i. destruct (excluded_middle_informative (exists x, P x)) as [Hex|HnonP]. apply constructive_indefinite_description with (P:= fun x => (exists x, P x) -> P x). destruct Hex as (x,Hx). exists x; intros _; exact Hx. assert {x : A | True} as (a,_). apply constructive_indefinite_description with (P := fun _ : A => True). destruct i as (a); firstorder. firstorder. Defined. (** Hilbert's epsilon operator *) Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A := proj1_sig (classical_indefinite_description P i). Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) : (exists x, P x) -> P (epsilon i P) := proj2_sig (classical_indefinite_description P i). (** Open question: is classical_indefinite_description constructively provable from [relational_choice] and [constructive_definite_description] (at least, using the fact that [functional_choice] is provable from [relational_choice] and [unique_choice], we know that the double negation of [classical_indefinite_description] is provable (see [relative_non_contradiction_of_indefinite_desc]). *) (** A proof that if [P] is inhabited, [epsilon a P] does not depend on the actual proof that the domain of [P] is inhabited (proof idea kindly provided by Pierre Castéran) *) Lemma epsilon_inh_irrelevance : forall (A:Type) (i j : inhabited A) (P:A->Prop), (exists x, P x) -> epsilon i P = epsilon j P. Proof. intros. unfold epsilon, classical_indefinite_description. destruct (excluded_middle_informative (exists x : A, P x)) as [|[]]; trivial. Qed. Opaque epsilon. (** *** Weaker lemmas (compatibility lemmas) *) Theorem choice : forall (A B : Type) (R : A->B->Prop), (forall x : A, exists y : B, R x y) -> (exists f : A->B, forall x : A, R x (f x)). Proof. intros A B R H. exists (fun x => proj1_sig (constructive_indefinite_description _ (H x))). intro x. apply (proj2_sig (constructive_indefinite_description _ (H x))). Qed.