(* $Id$ *) (* A Library for finite sets, implemented as lists *) (* A Library with similar interface will soon be available under the name TreeSet in the theories/TREES directory *) (* PolyList is loaded, but not exported *) (* This allow to "hide" the definitions, functions and theorems of PolyList and to see only the ones of ListSet *) Require PolyList. Implicit Arguments On. Section first_definitions. Variable A : Set. Hypothesis Aeq_dec : (x,y:A){x=y}+{~x=y}. Definition set := (list A). Definition empty_set := (nil A). Fixpoint set_add [a:A; x:set] : set := Cases x of | nil => (cons a (nil A)) | (cons a1 x1) => Cases (Aeq_dec a a1) of | (left _) => (cons a1 x1) | (right _) => (cons a1 (set_add a x1)) end end. Fixpoint set_mem [a:A; x:set] : bool := Cases x of | nil => false | (cons a1 x1) => Cases (Aeq_dec a a1) of | (left _) => true | (right _) => (set_mem a x1) end end. (* If a belongs to x, removes a from x. If not, does nothing *) Fixpoint set_remove [a:A; x:set] : set := Cases x of | nil => empty_set | (cons a1 x1) => Cases (Aeq_dec a a1) of | (left _) => x1 | (right _) => (cons a1 (set_remove a x1)) end end. Fixpoint set_inter [x:set] : set -> set := Cases x of | nil => [y](nil A) | (cons a1 x1) => [y]if (set_mem a1 y) then (cons a1 (set_inter x1 y)) else (set_inter x1 y) end. Fixpoint set_union [x,y:set] : set := Cases y of | nil => x | (cons a1 y1) => (set_add a1 (set_union x y1)) end. (* returns the set of all els of x that does not belong to y *) Fixpoint set_diff [x:set] : set -> set := [y]Cases x of | nil => (nil A) | (cons a1 x1) => if (set_mem a1 y) then (set_diff x1 y) else (set_add a1 (set_diff x1 y)) end. (** Inductive set_In : A -> set -> Prop := set_In_singl : (a:A)(x:set)(set_In a (cons a (nil A))) | set_In_add : (a,b:A)(x:set)(set_In a x)->(set_In a (set_add b x)) . **) Definition set_In : A -> set -> Prop := (In 1!A). Lemma set_In_dec : (a:A; x:set){(set_In a x)}+{~(set_In a x)}. Proof. Unfold set_In. (*** Realizer set_mem. Program_all. ***) Induction x. Auto. Intros a0 x0 Ha0. Case (Aeq_dec a a0); Intro eq. Rewrite eq; Simpl; Auto with datatypes. Elim Ha0. Auto with datatypes. Right; Simpl; Unfold not; Intros [Hc1 | Hc2 ]; Auto with datatypes. Save. Lemma set_mem_ind : (B:Set)(P:B->Prop)(y,z:B)(a:A)(x:set) ((set_In a x) -> (P y)) ->(P z) ->(P (if (set_mem a x) then y else z)). Proof. Induction x; Simpl; Intros. Assumption. Elim (Aeq_dec a a0); Auto with datatypes. Save. Lemma set_mem_correct1 : (a:A)(x:set)(set_mem a x)=true -> (set_In a x). Proof. Induction x; Simpl. Discriminate. Intros a0 l; Elim (Aeq_dec a a0); Auto with datatypes. Save. Lemma set_mem_correct2 : (a:A)(x:set)(set_In a x) -> (set_mem a x)=true. Proof. Induction x; Simpl. Intro Ha; Elim Ha. Intros a0 l; Elim (Aeq_dec a a0); Auto with datatypes. Intros H1 H2 [H3 | H4]. Absurd a0=a; Auto with datatypes. Auto with datatypes. Save. Lemma set_mem_complete1 : (a:A)(x:set)(set_mem a x)=false -> ~(set_In a x). Proof. Induction x; Simpl. Tauto. Intros a0 l; Elim (Aeq_dec a a0). Intros; Discriminate H0. Unfold not; Intros; Elim H1; Auto with datatypes. Save. Lemma set_mem_complete2 : (a:A)(x:set)~(set_In a x) -> (set_mem a x)=false. Proof. Induction x; Simpl. Tauto. Intros a0 l; Elim (Aeq_dec a a0). Intros; Elim H0; Auto with datatypes. Tauto. Save. Lemma set_add_intro1 : (a,b:A)(x:set) (set_In a x) -> (set_In a (set_add b x)). Proof. Unfold set_In; Induction x; Simpl. Auto with datatypes. Intros a0 l H [ Ha0a | Hal ]. Elim (Aeq_dec b a0); Left; Assumption. Elim (Aeq_dec b a0); Right; [ Assumption | Auto with datatypes ]. Save. Lemma set_add_intro2 : (a,b:A)(x:set) a=b -> (set_In a (set_add b x)). Proof. Unfold set_In; Induction x; Simpl. Auto with datatypes. Intros a0 l H Hab. Elim (Aeq_dec b a0); [ Rewrite Hab; Intro Hba0; Rewrite Hba0; Simpl; Auto with datatypes | Auto with datatypes ]. Save. Hints Resolve set_add_intro1 set_add_intro2. Lemma set_add_intro : (a,b:A)(x:set) a=b\/(set_In a x) -> (set_In a (set_add b x)). Proof. Intros a b x [H1 | H2] ; Auto with datatypes. Save. Lemma set_add_elim : (a,b:A)(x:set) (set_In a (set_add b x)) -> a=b\/(set_In a x). Proof. Unfold set_In. Induction x. Simpl; Intros [H1|H2]; Auto with datatypes. Simpl; Do 3 Intro. Elim (Aeq_dec b a0). Tauto. Simpl; Intros; Elim H0. Trivial with datatypes. Tauto. Tauto. Save. Hints Resolve set_add_intro set_add_elim. Lemma set_add_not_empty : (a:A)(x:set)~(set_add a x)=empty_set. Proof. Induction x; Simpl. Discriminate. Intros; Elim (Aeq_dec a a0); Intros; Discriminate. Save. Lemma set_union_intro1 : (a:A)(x,y:set) (set_In a x) -> (set_In a (set_union x y)). Proof. Induction y; Simpl; Auto with datatypes. Save. Lemma set_union_intro2 : (a:A)(x,y:set) (set_In a y) -> (set_In a (set_union x y)). Proof. Induction y; Simpl. Tauto. Intros; Elim H0; Auto with datatypes. Save. Hints Resolve set_union_intro2 set_union_intro1. Lemma set_union_intro : (a:A)(x,y:set) (set_In a x)\/(set_In a y) -> (set_In a (set_union x y)). Proof. Intros; Elim H; Auto with datatypes. Save. Lemma set_union_elim : (a:A)(x,y:set) (set_In a (set_union x y)) -> (set_In a x)\/(set_In a y). Proof. Induction y; Simpl. Auto with datatypes. Intros. Generalize (set_add_elim H0). Intros [H1 | H1]. Auto with datatypes. Tauto. Save. Lemma set_inter_intro : (a:A)(x,y:set) (set_In a x) -> (set_In a y) -> (set_In a (set_inter x y)). Proof. Induction x. Auto with datatypes. Simpl; Intros a0 l Hrec y [Ha0a | Hal] Hy. Simpl; Rewrite Ha0a. Generalize (!set_mem_correct1 a y). Generalize (!set_mem_complete1 a y). Elim (set_mem a y); Simpl; Intros. Auto with datatypes. Absurd (set_In a y); Auto with datatypes. Elim (set_mem a0 y); [ Right; Auto with datatypes | Auto with datatypes]. Save. Lemma set_inter_elim1 : (a:A)(x,y:set) (set_In a (set_inter x y)) -> (set_In a x). Proof. Induction x. Auto with datatypes. Simpl; Intros a0 l Hrec y. Generalize (!set_mem_correct1 a0 y). Elim (set_mem a0 y); Simpl; Intros. Elim H0; EAuto with datatypes. EAuto with datatypes. Save. Lemma set_inter_elim2 : (a:A)(x,y:set) (set_In a (set_inter x y)) -> (set_In a y). Proof. Induction x. Tauto. Simpl; Intros a0 l Hrec y. Generalize (!set_mem_correct1 a0 y). Elim (set_mem a0 y); Simpl; Intros. Elim H0; [ Intro Hr; Rewrite <- Hr; EAuto with datatypes | EAuto with datatypes ] . EAuto with datatypes. Save. Hints Resolve set_inter_elim1 set_inter_elim2. Lemma set_inter_elim : (a:A)(x,y:set) (set_In a (set_inter x y)) -> (set_In a x)/\(set_In a y). Proof. EAuto with datatypes. Save. Lemma set_diff_intro : (a:A)(x,y:set) (set_In a x) -> ~(set_In a y) -> (set_In a (set_diff x y)). Proof. Induction x. Tauto. Simpl; Intros a0 l Hrec y [Ha0a | Hal] Hay. Rewrite Ha0a; Generalize (set_mem_complete2 Hay). Elim (set_mem a y); [ Intro Habs; Discriminate Habs | Auto with datatypes ]. Elim (set_mem a0 y); Auto with datatypes. Save. Lemma set_diff_elim1 : (a:A)(x,y:set) (set_In a (set_diff x y)) -> (set_In a x). Proof. Induction x. Tauto. Simpl; Intros a0 l Hrec y; Elim (set_mem a0 y). EAuto with datatypes. Intro; Generalize (set_add_elim H). Intros [H1 | H2]; EAuto with datatypes. Save. End first_definitions. Section other_definitions. Variables A,B : Set. Definition set_prod : (set A) -> (set B) -> (set A*B) := (list_prod 1!A 2!B). (* B^A, set of applications from A to B *) Definition set_power : (set A) -> (set B) -> (set (set A*B)) := (list_power 1!A 2!B). Definition set_map : (A->B) -> (set A) -> (set B) := (map 1!A 2!B). Definition set_fold_left : (B -> A -> B) -> (set A) -> B -> B := (fold_left 1!B 2!A). Definition set_fold_right : (A -> B -> B) -> (set A) -> B -> B := [f][x][b](fold_right f b x). End other_definitions. Implicit Arguments Off.