(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* default | x :: _ => x end. Definition hd_error (l:list A) := match l with | [] => None | x :: _ => Some x end. Definition tl (l:list A) := match l with | [] => nil | a :: m => m end. (** The [In] predicate *) Fixpoint In (a:A) (l:list A) : Prop := match l with | [] => False | b :: m => b = a \/ In a m end. End Lists. Section Facts. Variable A : Type. (** *** Generic facts *) (** Discrimination *) Theorem nil_cons : forall (x:A) (l:list A), [] <> x :: l. Proof. intros; discriminate. Qed. (** Destruction *) Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = []}. Proof. induction l as [|a tail]. right; reflexivity. left; exists a, tail; reflexivity. Qed. Lemma hd_error_tl_repr : forall l (a:A) r, hd_error l = Some a /\ tl l = r <-> l = a :: r. Proof. destruct l as [|x xs]. - unfold hd_error, tl; intros a r. split; firstorder discriminate. - intros. simpl. split. * intros (H1, H2). inversion H1. rewrite H2. reflexivity. * inversion 1. subst. auto. Qed. Lemma hd_error_some_nil : forall l (a:A), hd_error l = Some a -> l <> nil. Proof. unfold hd_error. destruct l; now discriminate. Qed. Theorem length_zero_iff_nil (l : list A): length l = 0 <-> l=[]. Proof. split; [now destruct l | now intros ->]. Qed. (** *** Head and tail *) Theorem hd_error_nil : hd_error (@nil A) = None. Proof. simpl; reflexivity. Qed. Theorem hd_error_cons : forall (l : list A) (x : A), hd_error (x::l) = Some x. Proof. intros; simpl; reflexivity. Qed. (************************) (** *** Facts about [In] *) (************************) (** Characterization of [In] *) Theorem in_eq : forall (a:A) (l:list A), In a (a :: l). Proof. simpl; auto. Qed. Theorem in_cons : forall (a b:A) (l:list A), In b l -> In b (a :: l). Proof. simpl; auto. Qed. Theorem not_in_cons (x a : A) (l : list A): ~ In x (a::l) <-> x<>a /\ ~ In x l. Proof. simpl. intuition. Qed. Theorem in_nil : forall a:A, ~ In a []. Proof. unfold not; intros a H; inversion_clear H. Qed. Theorem in_split : forall x (l:list A), In x l -> exists l1 l2, l = l1++x::l2. Proof. induction l; simpl; destruct 1. subst a; auto. exists [], l; auto. destruct (IHl H) as (l1,(l2,H0)). exists (a::l1), l2; simpl. apply f_equal. auto. Qed. (** Inversion *) Lemma in_inv : forall (a b:A) (l:list A), In b (a :: l) -> a = b \/ In b l. Proof. intros a b l H; inversion_clear H; auto. Qed. (** Decidability of [In] *) Theorem in_dec : (forall x y:A, {x = y} + {x <> y}) -> forall (a:A) (l:list A), {In a l} + {~ In a l}. Proof. intro H; induction l as [| a0 l IHl]. right; apply in_nil. destruct (H a0 a); simpl; auto. destruct IHl; simpl; auto. right; unfold not; intros [Hc1| Hc2]; auto. Defined. (**************************) (** *** Facts about [app] *) (**************************) (** Discrimination *) Theorem app_cons_not_nil : forall (x y:list A) (a:A), [] <> x ++ a :: y. Proof. unfold not. destruct x as [| a l]; simpl; intros. discriminate H. discriminate H. Qed. (** Concat with [nil] *) Theorem app_nil_l : forall l:list A, [] ++ l = l. Proof. reflexivity. Qed. Theorem app_nil_r : forall l:list A, l ++ [] = l. Proof. induction l; simpl; f_equal; auto. Qed. (* begin hide *) (* Deprecated *) Theorem app_nil_end : forall (l:list A), l = l ++ []. Proof. symmetry; apply app_nil_r. Qed. (* end hide *) (** [app] is associative *) Theorem app_assoc : forall l m n:list A, l ++ m ++ n = (l ++ m) ++ n. Proof. intros l m n; induction l; simpl; f_equal; auto. Qed. (* begin hide *) (* Deprecated *) Theorem app_assoc_reverse : forall l m n:list A, (l ++ m) ++ n = l ++ m ++ n. Proof. auto using app_assoc. Qed. Hint Resolve app_assoc_reverse. (* end hide *) (** [app] commutes with [cons] *) Theorem app_comm_cons : forall (x y:list A) (a:A), a :: (x ++ y) = (a :: x) ++ y. Proof. auto. Qed. (** Facts deduced from the result of a concatenation *) Theorem app_eq_nil : forall l l':list A, l ++ l' = [] -> l = [] /\ l' = []. Proof. destruct l as [| x l]; destruct l' as [| y l']; simpl; auto. intro; discriminate. intros H; discriminate H. Qed. Theorem app_eq_unit : forall (x y:list A) (a:A), x ++ y = [a] -> x = [] /\ y = [a] \/ x = [a] /\ y = []. Proof. destruct x as [| a l]; [ destruct y as [| a l] | destruct y as [| a0 l0] ]; simpl. intros a H; discriminate H. left; split; auto. right; split; auto. generalize H. generalize (app_nil_r l); intros E. rewrite -> E; auto. intros. injection H as H H0. assert ([] = l ++ a0 :: l0) by auto. apply app_cons_not_nil in H1 as []. Qed. Lemma app_inj_tail : forall (x y:list A) (a b:A), x ++ [a] = y ++ [b] -> x = y /\ a = b. Proof. induction x as [| x l IHl]; [ destruct y as [| a l] | destruct y as [| a l0] ]; simpl; auto. - intros a b H. injection H. auto. - intros a0 b H. injection H as H1 H0. apply app_cons_not_nil in H0 as []. - intros a b H. injection H as H1 H0. assert ([] = l ++ [a]) by auto. apply app_cons_not_nil in H as []. - intros a0 b H. injection H as <- H0. destruct (IHl l0 a0 b H0) as (<-,<-). split; auto. Qed. (** Compatibility with other operations *) Lemma app_length : forall l l' : list A, length (l++l') = length l + length l'. Proof. induction l; simpl; auto. Qed. Lemma in_app_or : forall (l m:list A) (a:A), In a (l ++ m) -> In a l \/ In a m. Proof. intros l m a. elim l; simpl; auto. intros a0 y H H0. now_show ((a0 = a \/ In a y) \/ In a m). elim H0; auto. intro H1. now_show ((a0 = a \/ In a y) \/ In a m). elim (H H1); auto. Qed. Lemma in_or_app : forall (l m:list A) (a:A), In a l \/ In a m -> In a (l ++ m). Proof. intros l m a. elim l; simpl; intro H. now_show (In a m). elim H; auto; intro H0. now_show (In a m). elim H0. (* subProof completed *) intros y H0 H1. now_show (H = a \/ In a (y ++ m)). elim H1; auto 4. intro H2. now_show (H = a \/ In a (y ++ m)). elim H2; auto. Qed. Lemma in_app_iff : forall l l' (a:A), In a (l++l') <-> In a l \/ In a l'. Proof. split; auto using in_app_or, in_or_app. Qed. Lemma app_inv_head: forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2. Proof. induction l; simpl; auto; injection 1; auto. Qed. Lemma app_inv_tail: forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2. Proof. intros l l1 l2; revert l1 l2 l. induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2]; simpl; auto; intros l H. absurd (length (x2 :: l2 ++ l) <= length l). simpl; rewrite app_length; auto with arith. rewrite <- H; auto with arith. absurd (length (x1 :: l1 ++ l) <= length l). simpl; rewrite app_length; auto with arith. rewrite H; auto with arith. injection H as H H0; f_equal; eauto. Qed. End Facts. Hint Resolve app_assoc app_assoc_reverse: datatypes. Hint Resolve app_comm_cons app_cons_not_nil: datatypes. Hint Immediate app_eq_nil: datatypes. Hint Resolve app_eq_unit app_inj_tail: datatypes. Hint Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app: datatypes. (*******************************************) (** * Operations on the elements of a list *) (*******************************************) Section Elts. Variable A : Type. (*****************************) (** ** Nth element of a list *) (*****************************) Fixpoint nth (n:nat) (l:list A) (default:A) {struct l} : A := match n, l with | O, x :: l' => x | O, other => default | S m, [] => default | S m, x :: t => nth m t default end. Fixpoint nth_ok (n:nat) (l:list A) (default:A) {struct l} : bool := match n, l with | O, x :: l' => true | O, other => false | S m, [] => false | S m, x :: t => nth_ok m t default end. Lemma nth_in_or_default : forall (n:nat) (l:list A) (d:A), {In (nth n l d) l} + {nth n l d = d}. Proof. intros n l d; revert n; induction l. - right; destruct n; trivial. - intros [|n]; simpl. * left; auto. * destruct (IHl n); auto. Qed. Lemma nth_S_cons : forall (n:nat) (l:list A) (d a:A), In (nth n l d) l -> In (nth (S n) (a :: l) d) (a :: l). Proof. simpl; auto. Qed. Fixpoint nth_error (l:list A) (n:nat) {struct n} : option A := match n, l with | O, x :: _ => Some x | S n, _ :: l => nth_error l n | _, _ => None end. Definition nth_default (default:A) (l:list A) (n:nat) : A := match nth_error l n with | Some x => x | None => default end. Lemma nth_default_eq : forall n l (d:A), nth_default d l n = nth n l d. Proof. unfold nth_default; induction n; intros [ | ] ?; simpl; auto. Qed. (** Results about [nth] *) Lemma nth_In : forall (n:nat) (l:list A) (d:A), n < length l -> In (nth n l d) l. Proof. unfold lt; induction n as [| n hn]; simpl. - destruct l; simpl; [ inversion 2 | auto ]. - destruct l; simpl. * inversion 2. * intros d ie; right; apply hn; auto with arith. Qed. Lemma In_nth l x d : In x l -> exists n, n < length l /\ nth n l d = x. Proof. induction l as [|a l IH]. - easy. - intros [H|H]. * subst; exists 0; simpl; auto with arith. * destruct (IH H) as (n & Hn & Hn'). exists (S n); simpl; auto with arith. Qed. Lemma nth_overflow : forall l n d, length l <= n -> nth n l d = d. Proof. induction l; destruct n; simpl; intros; auto. - inversion H. - apply IHl; auto with arith. Qed. Lemma nth_indep : forall l n d d', n < length l -> nth n l d = nth n l d'. Proof. induction l. - inversion 1. - intros [|n] d d'; simpl; auto with arith. Qed. Lemma app_nth1 : forall l l' d n, n < length l -> nth n (l++l') d = nth n l d. Proof. induction l. - inversion 1. - intros l' d [|n]; simpl; auto with arith. Qed. Lemma app_nth2 : forall l l' d n, n >= length l -> nth n (l++l') d = nth (n-length l) l' d. Proof. induction l; intros l' d [|n]; auto. - inversion 1. - intros; simpl; rewrite IHl; auto with arith. Qed. Lemma nth_split n l d : n < length l -> exists l1, exists l2, l = l1 ++ nth n l d :: l2 /\ length l1 = n. Proof. revert l. induction n as [|n IH]; intros [|a l] H; try easy. - exists nil; exists l; now simpl. - destruct (IH l) as (l1 & l2 & Hl & Hl1); auto with arith. exists (a::l1); exists l2; simpl; split; now f_equal. Qed. (** Results about [nth_error] *) Lemma nth_error_In l n x : nth_error l n = Some x -> In x l. Proof. revert n. induction l as [|a l IH]; intros [|n]; simpl; try easy. - injection 1; auto. - eauto. Qed. Lemma In_nth_error l x : In x l -> exists n, nth_error l n = Some x. Proof. induction l as [|a l IH]. - easy. - intros [H|H]. * subst; exists 0; simpl; auto with arith. * destruct (IH H) as (n,Hn). exists (S n); simpl; auto with arith. Qed. Lemma nth_error_None l n : nth_error l n = None <-> length l <= n. Proof. revert n. induction l; destruct n; simpl. - split; auto. - split; auto with arith. - split; now auto with arith. - rewrite IHl; split; auto with arith. Qed. Lemma nth_error_Some l n : nth_error l n <> None <-> n < length l. Proof. revert n. induction l; destruct n; simpl. - split; [now destruct 1 | inversion 1]. - split; [now destruct 1 | inversion 1]. - split; now auto with arith. - rewrite IHl; split; auto with arith. Qed. Lemma nth_error_split l n a : nth_error l n = Some a -> exists l1, exists l2, l = l1 ++ a :: l2 /\ length l1 = n. Proof. revert l. induction n as [|n IH]; intros [|x l] H; simpl in *; try easy. - exists nil; exists l. now injection H as ->. - destruct (IH _ H) as (l1 & l2 & H1 & H2). exists (x::l1); exists l2; simpl; split; now f_equal. Qed. Lemma nth_error_app1 l l' n : n < length l -> nth_error (l++l') n = nth_error l n. Proof. revert l. induction n; intros [|a l] H; auto; try solve [inversion H]. simpl in *. apply IHn. auto with arith. Qed. Lemma nth_error_app2 l l' n : length l <= n -> nth_error (l++l') n = nth_error l' (n-length l). Proof. revert l. induction n; intros [|a l] H; auto; try solve [inversion H]. simpl in *. apply IHn. auto with arith. Qed. (*****************) (** ** Remove *) (*****************) Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}. Fixpoint remove (x : A) (l : list A) : list A := match l with | [] => [] | y::tl => if (eq_dec x y) then remove x tl else y::(remove x tl) end. Theorem remove_In : forall (l : list A) (x : A), ~ In x (remove x l). Proof. induction l as [|x l]; auto. intro y; simpl; destruct (eq_dec y x) as [yeqx | yneqx]. apply IHl. unfold not; intro HF; simpl in HF; destruct HF; auto. apply (IHl y); assumption. Qed. (******************************) (** ** Last element of a list *) (******************************) (** [last l d] returns the last element of the list [l], or the default value [d] if [l] is empty. *) Fixpoint last (l:list A) (d:A) : A := match l with | [] => d | [a] => a | a :: l => last l d end. (** [removelast l] remove the last element of [l] *) Fixpoint removelast (l:list A) : list A := match l with | [] => [] | [a] => [] | a :: l => a :: removelast l end. Lemma app_removelast_last : forall l d, l <> [] -> l = removelast l ++ [last l d]. Proof. induction l. destruct 1; auto. intros d _. destruct l; auto. pattern (a0::l) at 1; rewrite IHl with d; auto; discriminate. Qed. Lemma exists_last : forall l, l <> [] -> { l' : (list A) & { a : A | l = l' ++ [a]}}. Proof. induction l. destruct 1; auto. intros _. destruct l. exists [], a; auto. destruct IHl as [l' (a',H)]; try discriminate. rewrite H. exists (a::l'), a'; auto. Qed. Lemma removelast_app : forall l l', l' <> [] -> removelast (l++l') = l ++ removelast l'. Proof. induction l. simpl; auto. simpl; intros. assert (l++l' <> []). destruct l. simpl; auto. simpl; discriminate. specialize (IHl l' H). destruct (l++l'); [elim H0; auto|f_equal; auto]. Qed. (******************************************) (** ** Counting occurrences of an element *) (******************************************) Fixpoint count_occ (l : list A) (x : A) : nat := match l with | [] => 0 | y :: tl => let n := count_occ tl x in if eq_dec y x then S n else n end. (** Compatibility of count_occ with operations on list *) Theorem count_occ_In l x : In x l <-> count_occ l x > 0. Proof. induction l as [|y l]; simpl. - split; [destruct 1 | apply gt_irrefl]. - destruct eq_dec as [->|Hneq]; rewrite IHl; intuition. Qed. Theorem count_occ_not_In l x : ~ In x l <-> count_occ l x = 0. Proof. rewrite count_occ_In. unfold gt. now rewrite Nat.nlt_ge, Nat.le_0_r. Qed. Lemma count_occ_nil x : count_occ [] x = 0. Proof. reflexivity. Qed. Theorem count_occ_inv_nil l : (forall x:A, count_occ l x = 0) <-> l = []. Proof. split. - induction l as [|x l]; trivial. intros H. specialize (H x). simpl in H. destruct eq_dec as [_|NEQ]; [discriminate|now elim NEQ]. - now intros ->. Qed. Lemma count_occ_cons_eq l x y : x = y -> count_occ (x::l) y = S (count_occ l y). Proof. intros H. simpl. now destruct (eq_dec x y). Qed. Lemma count_occ_cons_neq l x y : x <> y -> count_occ (x::l) y = count_occ l y. Proof. intros H. simpl. now destruct (eq_dec x y). Qed. End Elts. (*******************************) (** * Manipulating whole lists *) (*******************************) Section ListOps. Variable A : Type. (*************************) (** ** Reverse *) (*************************) Fixpoint rev (l:list A) : list A := match l with | [] => [] | x :: l' => rev l' ++ [x] end. Lemma rev_app_distr : forall x y:list A, rev (x ++ y) = rev y ++ rev x. Proof. induction x as [| a l IHl]. destruct y as [| a l]. simpl. auto. simpl. rewrite app_nil_r; auto. intro y. simpl. rewrite (IHl y). rewrite app_assoc; trivial. Qed. Remark rev_unit : forall (l:list A) (a:A), rev (l ++ [a]) = a :: rev l. Proof. intros. apply (rev_app_distr l [a]); simpl; auto. Qed. Lemma rev_involutive : forall l:list A, rev (rev l) = l. Proof. induction l as [| a l IHl]. simpl; auto. simpl. rewrite (rev_unit (rev l) a). rewrite IHl; auto. Qed. (** Compatibility with other operations *) Lemma in_rev : forall l x, In x l <-> In x (rev l). Proof. induction l. simpl; intuition. intros. simpl. intuition. subst. apply in_or_app; right; simpl; auto. apply in_or_app; left; firstorder. destruct (in_app_or _ _ _ H); firstorder. Qed. Lemma rev_length : forall l, length (rev l) = length l. Proof. induction l;simpl; auto. rewrite app_length. rewrite IHl. simpl. elim (length l); simpl; auto. Qed. Lemma rev_nth : forall l d n, n < length l -> nth n (rev l) d = nth (length l - S n) l d. Proof. induction l. intros; inversion H. intros. simpl in H. simpl (rev (a :: l)). simpl (length (a :: l) - S n). inversion H. rewrite <- minus_n_n; simpl. rewrite <- rev_length. rewrite app_nth2; auto. rewrite <- minus_n_n; auto. rewrite app_nth1; auto. rewrite (minus_plus_simpl_l_reverse (length l) n 1). replace (1 + length l) with (S (length l)); auto with arith. rewrite <- minus_Sn_m; auto with arith. apply IHl ; auto with arith. rewrite rev_length; auto. Qed. (** An alternative tail-recursive definition for reverse *) Fixpoint rev_append (l l': list A) : list A := match l with | [] => l' | a::l => rev_append l (a::l') end. Definition rev' l : list A := rev_append l []. Lemma rev_append_rev : forall l l', rev_append l l' = rev l ++ l'. Proof. induction l; simpl; auto; intros. rewrite <- app_assoc; firstorder. Qed. Lemma rev_alt : forall l, rev l = rev_append l []. Proof. intros; rewrite rev_append_rev. rewrite app_nil_r; trivial. Qed. (*********************************************) (** Reverse Induction Principle on Lists *) (*********************************************) Section Reverse_Induction. Lemma rev_list_ind : forall P:list A-> Prop, P [] -> (forall (a:A) (l:list A), P (rev l) -> P (rev (a :: l))) -> forall l:list A, P (rev l). Proof. induction l; auto. Qed. Theorem rev_ind : forall P:list A -> Prop, P [] -> (forall (x:A) (l:list A), P l -> P (l ++ [x])) -> forall l:list A, P l. Proof. intros. generalize (rev_involutive l). intros E; rewrite <- E. apply (rev_list_ind P). auto. simpl. intros. apply (H0 a (rev l0)). auto. Qed. End Reverse_Induction. (*************************) (** ** Concatenation *) (*************************) Fixpoint concat (l : list (list A)) : list A := match l with | nil => nil | cons x l => x ++ concat l end. Lemma concat_nil : concat nil = nil. Proof. reflexivity. Qed. Lemma concat_cons : forall x l, concat (cons x l) = x ++ concat l. Proof. reflexivity. Qed. Lemma concat_app : forall l1 l2, concat (l1 ++ l2) = concat l1 ++ concat l2. Proof. intros l1; induction l1 as [|x l1 IH]; intros l2; simpl. + reflexivity. + rewrite IH; apply app_assoc. Qed. (***********************************) (** ** Decidable equality on lists *) (***********************************) Hypothesis eq_dec : forall (x y : A), {x = y}+{x <> y}. Lemma list_eq_dec : forall l l':list A, {l = l'} + {l <> l'}. Proof. decide equality. Defined. End ListOps. (***************************************************) (** * Applying functions to the elements of a list *) (***************************************************) (************) (** ** Map *) (************) Section Map. Variables (A : Type) (B : Type). Variable f : A -> B. Fixpoint map (l:list A) : list B := match l with | [] => [] | a :: t => (f a) :: (map t) end. Lemma map_cons (x:A)(l:list A) : map (x::l) = (f x) :: (map l). Proof. reflexivity. Qed. Lemma in_map : forall (l:list A) (x:A), In x l -> In (f x) (map l). Proof. induction l; firstorder (subst; auto). Qed. Lemma in_map_iff : forall l y, In y (map l) <-> exists x, f x = y /\ In x l. Proof. induction l; firstorder (subst; auto). Qed. Lemma map_length : forall l, length (map l) = length l. Proof. induction l; simpl; auto. Qed. Lemma map_nth : forall l d n, nth n (map l) (f d) = f (nth n l d). Proof. induction l; simpl map; destruct n; firstorder. Qed. Lemma map_nth_error : forall n l d, nth_error l n = Some d -> nth_error (map l) n = Some (f d). Proof. induction n; intros [ | ] ? Heq; simpl in *; inversion Heq; auto. Qed. Lemma map_app : forall l l', map (l++l') = (map l)++(map l'). Proof. induction l; simpl; auto. intros; rewrite IHl; auto. Qed. Lemma map_rev : forall l, map (rev l) = rev (map l). Proof. induction l; simpl; auto. rewrite map_app. rewrite IHl; auto. Qed. Lemma map_eq_nil : forall l, map l = [] -> l = []. Proof. destruct l; simpl; reflexivity || discriminate. Qed. (** [map] and count of occurrences *) Hypothesis decA: forall x1 x2 : A, {x1 = x2} + {x1 <> x2}. Hypothesis decB: forall y1 y2 : B, {y1 = y2} + {y1 <> y2}. Hypothesis Hfinjective: forall x1 x2: A, (f x1) = (f x2) -> x1 = x2. Theorem count_occ_map x l: count_occ decA l x = count_occ decB (map l) (f x). Proof. revert x. induction l as [| a l' Hrec]; intro x; simpl. - reflexivity. - specialize (Hrec x). destruct (decA a x) as [H1|H1], (decB (f a) (f x)) as [H2|H2]. * rewrite Hrec. reflexivity. * contradiction H2. rewrite H1. reflexivity. * specialize (Hfinjective H2). contradiction H1. * assumption. Qed. (** [flat_map] *) Definition flat_map (f:A -> list B) := fix flat_map (l:list A) : list B := match l with | nil => nil | cons x t => (f x)++(flat_map t) end. Lemma in_flat_map : forall (f:A->list B)(l:list A)(y:B), In y (flat_map f l) <-> exists x, In x l /\ In y (f x). Proof using A B. clear Hfinjective. induction l; simpl; split; intros. contradiction. destruct H as (x,(H,_)); contradiction. destruct (in_app_or _ _ _ H). exists a; auto. destruct (IHl y) as (H1,_); destruct (H1 H0) as (x,(H2,H3)). exists x; auto. apply in_or_app. destruct H as (x,(H0,H1)); destruct H0. subst; auto. right; destruct (IHl y) as (_,H2); apply H2. exists x; auto. Qed. End Map. Lemma flat_map_concat_map : forall A B (f : A -> list B) l, flat_map f l = concat (map f l). Proof. intros A B f l; induction l as [|x l IH]; simpl. + reflexivity. + rewrite IH; reflexivity. Qed. Lemma concat_map : forall A B (f : A -> B) l, map f (concat l) = concat (map (map f) l). Proof. intros A B f l; induction l as [|x l IH]; simpl. + reflexivity. + rewrite map_app, IH; reflexivity. Qed. Lemma map_id : forall (A :Type) (l : list A), map (fun x => x) l = l. Proof. induction l; simpl; auto; rewrite IHl; auto. Qed. Lemma map_map : forall (A B C:Type)(f:A->B)(g:B->C) l, map g (map f l) = map (fun x => g (f x)) l. Proof. induction l; simpl; auto. rewrite IHl; auto. Qed. Lemma map_ext_in : forall (A B : Type)(f g:A->B) l, (forall a, In a l -> f a = g a) -> map f l = map g l. Proof. induction l; simpl; auto. intros; rewrite H by intuition; rewrite IHl; auto. Qed. Lemma map_ext : forall (A B : Type)(f g:A->B), (forall a, f a = g a) -> forall l, map f l = map g l. Proof. intros; apply map_ext_in; auto. Qed. (************************************) (** Left-to-right iterator on lists *) (************************************) Section Fold_Left_Recursor. Variables (A : Type) (B : Type). Variable f : A -> B -> A. Fixpoint fold_left (l:list B) (a0:A) : A := match l with | nil => a0 | cons b t => fold_left t (f a0 b) end. Lemma fold_left_app : forall (l l':list B)(i:A), fold_left (l++l') i = fold_left l' (fold_left l i). Proof. induction l. simpl; auto. intros. simpl. auto. Qed. End Fold_Left_Recursor. Lemma fold_left_length : forall (A:Type)(l:list A), fold_left (fun x _ => S x) l 0 = length l. Proof. intros A l. enough (H : forall n, fold_left (fun x _ => S x) l n = n + length l) by exact (H 0). induction l; simpl; auto. intros; rewrite IHl. simpl; auto with arith. Qed. (************************************) (** Right-to-left iterator on lists *) (************************************) Section Fold_Right_Recursor. Variables (A : Type) (B : Type). Variable f : B -> A -> A. Variable a0 : A. Fixpoint fold_right (l:list B) : A := match l with | nil => a0 | cons b t => f b (fold_right t) end. End Fold_Right_Recursor. Lemma fold_right_app : forall (A B:Type)(f:A->B->B) l l' i, fold_right f i (l++l') = fold_right f (fold_right f i l') l. Proof. induction l. simpl; auto. simpl; intros. f_equal; auto. Qed. Lemma fold_left_rev_right : forall (A B:Type)(f:A->B->B) l i, fold_right f i (rev l) = fold_left (fun x y => f y x) l i. Proof. induction l. simpl; auto. intros. simpl. rewrite fold_right_app; simpl; auto. Qed. Theorem fold_symmetric : forall (A : Type) (f : A -> A -> A), (forall x y z : A, f x (f y z) = f (f x y) z) -> forall (a0 : A), (forall y : A, f a0 y = f y a0) -> forall (l : list A), fold_left f l a0 = fold_right f a0 l. Proof. intros A f assoc a0 comma0 l. induction l as [ | a1 l ]; [ simpl; reflexivity | ]. simpl. rewrite <- IHl. clear IHl. revert a1. induction l; [ auto | ]. simpl. intro. rewrite <- assoc. rewrite IHl. rewrite IHl. auto. Qed. (** [(list_power x y)] is [y^x], or the set of sequences of elts of [y] indexed by elts of [x], sorted in lexicographic order. *) Fixpoint list_power (A B:Type)(l:list A) (l':list B) : list (list (A * B)) := match l with | nil => cons nil nil | cons x t => flat_map (fun f:list (A * B) => map (fun y:B => cons (x, y) f) l') (list_power t l') end. (*************************************) (** ** Boolean operations over lists *) (*************************************) Section Bool. Variable A : Type. Variable f : A -> bool. (** find whether a boolean function can be satisfied by an elements of the list. *) Fixpoint existsb (l:list A) : bool := match l with | nil => false | a::l => f a || existsb l end. Lemma existsb_exists : forall l, existsb l = true <-> exists x, In x l /\ f x = true. Proof. induction l; simpl; intuition. inversion H. firstorder. destruct (orb_prop _ _ H1); firstorder. firstorder. subst. rewrite H2; auto. Qed. Lemma existsb_nth : forall l n d, n < length l -> existsb l = false -> f (nth n l d) = false. Proof. induction l. inversion 1. simpl; intros. destruct (orb_false_elim _ _ H0); clear H0; auto. destruct n ; auto. rewrite IHl; auto with arith. Qed. Lemma existsb_app : forall l1 l2, existsb (l1++l2) = existsb l1 || existsb l2. Proof. induction l1; intros l2; simpl. solve[auto]. case (f a); simpl; solve[auto]. Qed. (** find whether a boolean function is satisfied by all the elements of a list. *) Fixpoint forallb (l:list A) : bool := match l with | nil => true | a::l => f a && forallb l end. Lemma forallb_forall : forall l, forallb l = true <-> (forall x, In x l -> f x = true). Proof. induction l; simpl; intuition. destruct (andb_prop _ _ H1). congruence. destruct (andb_prop _ _ H1); auto. assert (forallb l = true). apply H0; intuition. rewrite H1; auto. Qed. Lemma forallb_app : forall l1 l2, forallb (l1++l2) = forallb l1 && forallb l2. Proof. induction l1; simpl. solve[auto]. case (f a); simpl; solve[auto]. Qed. (** [filter] *) Fixpoint filter (l:list A) : list A := match l with | nil => nil | x :: l => if f x then x::(filter l) else filter l end. Lemma filter_In : forall x l, In x (filter l) <-> In x l /\ f x = true. Proof. induction l; simpl. intuition. intros. case_eq (f a); intros; simpl; intuition congruence. Qed. (** [find] *) Fixpoint find (l:list A) : option A := match l with | nil => None | x :: tl => if f x then Some x else find tl end. Lemma find_some l x : find l = Some x -> In x l /\ f x = true. Proof. induction l as [|a l IH]; simpl; [easy| ]. case_eq (f a); intros Ha Eq. * injection Eq as ->; auto. * destruct (IH Eq); auto. Qed. Lemma find_none l : find l = None -> forall x, In x l -> f x = false. Proof. induction l as [|a l IH]; simpl; [easy|]. case_eq (f a); intros Ha Eq x IN; [easy|]. destruct IN as [<-|IN]; auto. Qed. (** [partition] *) Fixpoint partition (l:list A) : list A * list A := match l with | nil => (nil, nil) | x :: tl => let (g,d) := partition tl in if f x then (x::g,d) else (g,x::d) end. Theorem partition_cons1 a l l1 l2: partition l = (l1, l2) -> f a = true -> partition (a::l) = (a::l1, l2). Proof. simpl. now intros -> ->. Qed. Theorem partition_cons2 a l l1 l2: partition l = (l1, l2) -> f a=false -> partition (a::l) = (l1, a::l2). Proof. simpl. now intros -> ->. Qed. Theorem partition_length l l1 l2: partition l = (l1, l2) -> length l = length l1 + length l2. Proof. revert l1 l2. induction l as [ | a l' Hrec]; intros l1 l2. - now intros [= <- <- ]. - simpl. destruct (f a), (partition l') as (left, right); intros [= <- <- ]; simpl; rewrite (Hrec left right); auto. Qed. Theorem partition_inv_nil (l : list A): partition l = ([], []) <-> l = []. Proof. split. - destruct l as [|a l']. * intuition. * simpl. destruct (f a), (partition l'); now intros [= -> ->]. - now intros ->. Qed. Theorem elements_in_partition l l1 l2: partition l = (l1, l2) -> forall x:A, In x l <-> In x l1 \/ In x l2. Proof. revert l1 l2. induction l as [| a l' Hrec]; simpl; intros l1 l2 Eq x. - injection Eq as <- <-. tauto. - destruct (partition l') as (left, right). specialize (Hrec left right eq_refl x). destruct (f a); injection Eq as <- <-; simpl; tauto. Qed. End Bool. (******************************************************) (** ** Operations on lists of pairs or lists of lists *) (******************************************************) Section ListPairs. Variables (A : Type) (B : Type). (** [split] derives two lists from a list of pairs *) Fixpoint split (l:list (A*B)) : list A * list B := match l with | [] => ([], []) | (x,y) :: tl => let (left,right) := split tl in (x::left, y::right) end. Lemma in_split_l : forall (l:list (A*B))(p:A*B), In p l -> In (fst p) (fst (split l)). Proof. induction l; simpl; intros; auto. destruct p; destruct a; destruct (split l); simpl in *. destruct H. injection H; auto. right; apply (IHl (a0,b) H). Qed. Lemma in_split_r : forall (l:list (A*B))(p:A*B), In p l -> In (snd p) (snd (split l)). Proof. induction l; simpl; intros; auto. destruct p; destruct a; destruct (split l); simpl in *. destruct H. injection H; auto. right; apply (IHl (a0,b) H). Qed. Lemma split_nth : forall (l:list (A*B))(n:nat)(d:A*B), nth n l d = (nth n (fst (split l)) (fst d), nth n (snd (split l)) (snd d)). Proof. induction l. destruct n; destruct d; simpl; auto. destruct n; destruct d; simpl; auto. destruct a; destruct (split l); simpl; auto. destruct a; destruct (split l); simpl in *; auto. apply IHl. Qed. Lemma split_length_l : forall (l:list (A*B)), length (fst (split l)) = length l. Proof. induction l; simpl; auto. destruct a; destruct (split l); simpl; auto. Qed. Lemma split_length_r : forall (l:list (A*B)), length (snd (split l)) = length l. Proof. induction l; simpl; auto. destruct a; destruct (split l); simpl; auto. Qed. (** [combine] is the opposite of [split]. Lists given to [combine] are meant to be of same length. If not, [combine] stops on the shorter list *) Fixpoint combine (l : list A) (l' : list B) : list (A*B) := match l,l' with | x::tl, y::tl' => (x,y)::(combine tl tl') | _, _ => nil end. Lemma split_combine : forall (l: list (A*B)), let (l1,l2) := split l in combine l1 l2 = l. Proof. induction l. simpl; auto. destruct a; simpl. destruct (split l); simpl in *. f_equal; auto. Qed. Lemma combine_split : forall (l:list A)(l':list B), length l = length l' -> split (combine l l') = (l,l'). Proof. induction l, l'; simpl; trivial; try discriminate. now intros [= ->%IHl]. Qed. Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B), In (x,y) (combine l l') -> In x l. Proof. induction l. simpl; auto. destruct l'; simpl; auto; intros. contradiction. destruct H. injection H; auto. right; apply IHl with l' y; auto. Qed. Lemma in_combine_r : forall (l:list A)(l':list B)(x:A)(y:B), In (x,y) (combine l l') -> In y l'. Proof. induction l. simpl; intros; contradiction. destruct l'; simpl; auto; intros. destruct H. injection H; auto. right; apply IHl with x; auto. Qed. Lemma combine_length : forall (l:list A)(l':list B), length (combine l l') = min (length l) (length l'). Proof. induction l. simpl; auto. destruct l'; simpl; auto. Qed. Lemma combine_nth : forall (l:list A)(l':list B)(n:nat)(x:A)(y:B), length l = length l' -> nth n (combine l l') (x,y) = (nth n l x, nth n l' y). Proof. induction l; destruct l'; intros; try discriminate. destruct n; simpl; auto. destruct n; simpl in *; auto. Qed. (** [list_prod] has the same signature as [combine], but unlike [combine], it adds every possible pairs, not only those at the same position. *) Fixpoint list_prod (l:list A) (l':list B) : list (A * B) := match l with | nil => nil | cons x t => (map (fun y:B => (x, y)) l')++(list_prod t l') end. Lemma in_prod_aux : forall (x:A) (y:B) (l:list B), In y l -> In (x, y) (map (fun y0:B => (x, y0)) l). Proof. induction l; [ simpl; auto | simpl; destruct 1 as [H1| ]; [ left; rewrite H1; trivial | right; auto ] ]. Qed. Lemma in_prod : forall (l:list A) (l':list B) (x:A) (y:B), In x l -> In y l' -> In (x, y) (list_prod l l'). Proof. induction l; [ simpl; tauto | simpl; intros; apply in_or_app; destruct H; [ left; rewrite H; apply in_prod_aux; assumption | right; auto ] ]. Qed. Lemma in_prod_iff : forall (l:list A)(l':list B)(x:A)(y:B), In (x,y) (list_prod l l') <-> In x l /\ In y l'. Proof. split; [ | intros; apply in_prod; intuition ]. induction l; simpl; intros. intuition. destruct (in_app_or _ _ _ H); clear H. destruct (in_map_iff (fun y : B => (a, y)) l' (x,y)) as (H1,_). destruct (H1 H0) as (z,(H2,H3)); clear H0 H1. injection H2 as -> ->; intuition. intuition. Qed. Lemma prod_length : forall (l:list A)(l':list B), length (list_prod l l') = (length l) * (length l'). Proof. induction l; simpl; auto. intros. rewrite app_length. rewrite map_length. auto. Qed. End ListPairs. (*****************************************) (** * Miscellaneous operations on lists *) (*****************************************) (******************************) (** ** Length order of lists *) (******************************) Section length_order. Variable A : Type. Definition lel (l m:list A) := length l <= length m. Variables a b : A. Variables l m n : list A. Lemma lel_refl : lel l l. Proof. unfold lel; auto with arith. Qed. Lemma lel_trans : lel l m -> lel m n -> lel l n. Proof. unfold lel; intros. now_show (length l <= length n). apply le_trans with (length m); auto with arith. Qed. Lemma lel_cons_cons : lel l m -> lel (a :: l) (b :: m). Proof. unfold lel; simpl; auto with arith. Qed. Lemma lel_cons : lel l m -> lel l (b :: m). Proof. unfold lel; simpl; auto with arith. Qed. Lemma lel_tail : lel (a :: l) (b :: m) -> lel l m. Proof. unfold lel; simpl; auto with arith. Qed. Lemma lel_nil : forall l':list A, lel l' nil -> nil = l'. Proof. intro l'; elim l'; auto with arith. intros a' y H H0. now_show (nil = a' :: y). absurd (S (length y) <= 0); auto with arith. Qed. End length_order. Hint Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons: datatypes. (******************************) (** ** Set inclusion on list *) (******************************) Section SetIncl. Variable A : Type. Definition incl (l m:list A) := forall a:A, In a l -> In a m. Hint Unfold incl. Lemma incl_refl : forall l:list A, incl l l. Proof. auto. Qed. Hint Resolve incl_refl. Lemma incl_tl : forall (a:A) (l m:list A), incl l m -> incl l (a :: m). Proof. auto with datatypes. Qed. Hint Immediate incl_tl. Lemma incl_tran : forall l m n:list A, incl l m -> incl m n -> incl l n. Proof. auto. Qed. Lemma incl_appl : forall l m n:list A, incl l n -> incl l (n ++ m). Proof. auto with datatypes. Qed. Hint Immediate incl_appl. Lemma incl_appr : forall l m n:list A, incl l n -> incl l (m ++ n). Proof. auto with datatypes. Qed. Hint Immediate incl_appr. Lemma incl_cons : forall (a:A) (l m:list A), In a m -> incl l m -> incl (a :: l) m. Proof. unfold incl; simpl; intros a l m H H0 a0 H1. now_show (In a0 m). elim H1. now_show (a = a0 -> In a0 m). elim H1; auto; intro H2. now_show (a = a0 -> In a0 m). elim H2; auto. (* solves subgoal *) now_show (In a0 l -> In a0 m). auto. Qed. Hint Resolve incl_cons. Lemma incl_app : forall l m n:list A, incl l n -> incl m n -> incl (l ++ m) n. Proof. unfold incl; simpl; intros l m n H H0 a H1. now_show (In a n). elim (in_app_or _ _ _ H1); auto. Qed. Hint Resolve incl_app. End SetIncl. Hint Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons incl_app: datatypes. (**************************************) (** * Cutting a list at some position *) (**************************************) Section Cutting. Variable A : Type. Fixpoint firstn (n:nat)(l:list A) : list A := match n with | 0 => nil | S n => match l with | nil => nil | a::l => a::(firstn n l) end end. Lemma firstn_nil n: firstn n [] = []. Proof. induction n; now simpl. Qed. Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l). Proof. now simpl. Qed. Lemma firstn_all l: firstn (length l) l = l. Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed. Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l. Proof. induction n as [|k iHk]. - intro. inversion 1 as [H1|?]. rewrite (length_zero_iff_nil l) in H1. subst. now simpl. - destruct l as [|x xs]; simpl. * now reflexivity. * simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H. Qed. Lemma firstn_O l: firstn 0 l = []. Proof. now simpl. Qed. Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n. Proof. induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl]. - auto with arith. - apply Peano.le_n_S, iHk. Qed. Lemma firstn_length_le: forall l:list A, forall n:nat, n <= length l -> length (firstn n l) = n. Proof. induction l as [|x xs Hrec]. - simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl. - destruct n. * now simpl. * simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H). Qed. Lemma firstn_app n: forall l1 l2, firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2). Proof. induction n as [|k iHk]; intros l1 l2. - now simpl. - destruct l1 as [|x xs]. * unfold firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O. * rewrite <- app_comm_cons. simpl. f_equal. apply iHk. Qed. Lemma firstn_app_2 n: forall l1 l2, firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2. Proof. induction n as [| k iHk];intros l1 l2. - unfold firstn at 2. rewrite <- plus_n_O, app_nil_r. rewrite firstn_app. rewrite <- minus_diag_reverse. unfold firstn at 2. rewrite app_nil_r. apply firstn_all. - destruct l2 as [|x xs]. * simpl. rewrite app_nil_r. apply firstn_all2. auto with arith. * rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k). auto with arith. rewrite H0, firstn_all2; [reflexivity | auto with arith]. Qed. Lemma firstn_firstn: forall l:list A, forall i j : nat, firstn i (firstn j l) = firstn (min i j) l. Proof. induction l as [|x xs Hl]. - intros. simpl. now rewrite ?firstn_nil. - destruct i. * intro. now simpl. * destruct j. + now simpl. + simpl. f_equal. apply Hl. Qed. Fixpoint skipn (n:nat)(l:list A) : list A := match n with | 0 => l | S n => match l with | nil => nil | a::l => skipn n l end end. Lemma firstn_skipn : forall n l, firstn n l ++ skipn n l = l. Proof. induction n. simpl; auto. destruct l; simpl; auto. f_equal; auto. Qed. Lemma firstn_length : forall n l, length (firstn n l) = min n (length l). Proof. induction n; destruct l; simpl; auto. Qed. Lemma removelast_firstn : forall n l, n < length l -> removelast (firstn (S n) l) = firstn n l. Proof. induction n; destruct l. simpl; auto. simpl; auto. simpl; auto. intros. simpl in H. change (firstn (S (S n)) (a::l)) with ((a::nil)++firstn (S n) l). change (firstn (S n) (a::l)) with (a::firstn n l). rewrite removelast_app. rewrite IHn; auto with arith. clear IHn; destruct l; simpl in *; try discriminate. inversion_clear H. inversion_clear H0. Qed. Lemma firstn_removelast : forall n l, n < length l -> firstn n (removelast l) = firstn n l. Proof. induction n; destruct l. simpl; auto. simpl; auto. simpl; auto. intros. simpl in H. change (removelast (a :: l)) with (removelast ((a::nil)++l)). rewrite removelast_app. simpl; f_equal; auto with arith. intro H0; rewrite H0 in H; inversion_clear H; inversion_clear H1. Qed. End Cutting. (**********************************************************************) (** ** Predicate for List addition/removal (no need for decidability) *) (**********************************************************************) Section Add. Variable A : Type. (* [Add a l l'] means that [l'] is exactly [l], with [a] added once somewhere *) Inductive Add (a:A) : list A -> list A -> Prop := | Add_head l : Add a l (a::l) | Add_cons x l l' : Add a l l' -> Add a (x::l) (x::l'). Lemma Add_app a l1 l2 : Add a (l1++l2) (l1++a::l2). Proof. induction l1; simpl; now constructor. Qed. Lemma Add_split a l l' : Add a l l' -> exists l1 l2, l = l1++l2 /\ l' = l1++a::l2. Proof. induction 1. - exists nil; exists l; split; trivial. - destruct IHAdd as (l1 & l2 & Hl & Hl'). exists (x::l1); exists l2; split; simpl; f_equal; trivial. Qed. Lemma Add_in a l l' : Add a l l' -> forall x, In x l' <-> In x (a::l). Proof. induction 1; intros; simpl in *; rewrite ?IHAdd; tauto. Qed. Lemma Add_length a l l' : Add a l l' -> length l' = S (length l). Proof. induction 1; simpl; auto with arith. Qed. Lemma Add_inv a l : In a l -> exists l', Add a l' l. Proof. intro Ha. destruct (in_split _ _ Ha) as (l1 & l2 & ->). exists (l1 ++ l2). apply Add_app. Qed. Lemma incl_Add_inv a l u v : ~In a l -> incl (a::l) v -> Add a u v -> incl l u. Proof. intros Ha H AD y Hy. assert (Hy' : In y (a::u)). { rewrite <- (Add_in AD). apply H; simpl; auto. } destruct Hy'; [ subst; now elim Ha | trivial ]. Qed. End Add. (********************************) (** ** Lists without redundancy *) (********************************) Section ReDun. Variable A : Type. Inductive NoDup : list A -> Prop := | NoDup_nil : NoDup nil | NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l). Lemma NoDup_Add a l l' : Add a l l' -> (NoDup l' <-> NoDup l /\ ~In a l). Proof. induction 1 as [l|x l l' AD IH]. - split; [ inversion_clear 1; now split | now constructor ]. - split. + inversion_clear 1. rewrite IH in *. rewrite (Add_in AD) in *. simpl in *; split; try constructor; intuition. + intros (N,IN). inversion_clear N. constructor. * rewrite (Add_in AD); simpl in *; intuition. * apply IH. split; trivial. simpl in *; intuition. Qed. Lemma NoDup_remove l l' a : NoDup (l++a::l') -> NoDup (l++l') /\ ~In a (l++l'). Proof. apply NoDup_Add. apply Add_app. Qed. Lemma NoDup_remove_1 l l' a : NoDup (l++a::l') -> NoDup (l++l'). Proof. intros. now apply NoDup_remove with a. Qed. Lemma NoDup_remove_2 l l' a : NoDup (l++a::l') -> ~In a (l++l'). Proof. intros. now apply NoDup_remove. Qed. Theorem NoDup_cons_iff a l: NoDup (a::l) <-> ~ In a l /\ NoDup l. Proof. split. + inversion_clear 1. now split. + now constructor. Qed. (** Effective computation of a list without duplicates *) Hypothesis decA: forall x y : A, {x = y} + {x <> y}. Fixpoint nodup (l : list A) : list A := match l with | [] => [] | x::xs => if in_dec decA x xs then nodup xs else x::(nodup xs) end. Lemma nodup_In l x : In x (nodup l) <-> In x l. Proof. induction l as [|a l' Hrec]; simpl. - reflexivity. - destruct (in_dec decA a l'); simpl; rewrite Hrec. * intuition; now subst. * reflexivity. Qed. Lemma NoDup_nodup l: NoDup (nodup l). Proof. induction l as [|a l' Hrec]; simpl. - constructor. - destruct (in_dec decA a l'); simpl. * assumption. * constructor; [ now rewrite nodup_In | assumption]. Qed. Lemma nodup_inv k l a : nodup k = a :: l -> ~ In a l. Proof. intros H. assert (H' : NoDup (a::l)). { rewrite <- H. apply NoDup_nodup. } now inversion_clear H'. Qed. Theorem NoDup_count_occ l: NoDup l <-> (forall x:A, count_occ decA l x <= 1). Proof. induction l as [| a l' Hrec]. - simpl; split; auto. constructor. - rewrite NoDup_cons_iff, Hrec, (count_occ_not_In decA). clear Hrec. split. + intros (Ha, H) x. simpl. destruct (decA a x); auto. subst; now rewrite Ha. + split. * specialize (H a). rewrite count_occ_cons_eq in H; trivial. now inversion H. * intros x. specialize (H x). simpl in *. destruct (decA a x); auto. now apply Nat.lt_le_incl. Qed. Theorem NoDup_count_occ' l: NoDup l <-> (forall x:A, In x l -> count_occ decA l x = 1). Proof. rewrite NoDup_count_occ. setoid_rewrite (count_occ_In decA). unfold gt, lt in *. split; intros H x; specialize (H x); set (n := count_occ decA l x) in *; clearbody n. (* the rest would be solved by omega if we had it here... *) - now apply Nat.le_antisymm. - destruct (Nat.le_gt_cases 1 n); trivial. + rewrite H; trivial. + now apply Nat.lt_le_incl. Qed. (** Alternative characterisations of being without duplicates, thanks to [nth_error] and [nth] *) Lemma NoDup_nth_error l : NoDup l <-> (forall i j, i nth_error l i = nth_error l j -> i = j). Proof. split. { intros H; induction H as [|a l Hal Hl IH]; intros i j Hi E. - inversion Hi. - destruct i, j; simpl in *; auto. * elim Hal. eapply nth_error_In; eauto. * elim Hal. eapply nth_error_In; eauto. * f_equal. apply IH; auto with arith. } { induction l as [|a l]; intros H; constructor. * intro Ha. apply In_nth_error in Ha. destruct Ha as (n,Hn). assert (n < length l) by (now rewrite <- nth_error_Some, Hn). specialize (H 0 (S n)). simpl in H. discriminate H; auto with arith. * apply IHl. intros i j Hi E. apply eq_add_S, H; simpl; auto with arith. } Qed. Lemma NoDup_nth l d : NoDup l <-> (forall i j, i j nth i l d = nth j l d -> i = j). Proof. split. { intros H; induction H as [|a l Hal Hl IH]; intros i j Hi Hj E. - inversion Hi. - destruct i, j; simpl in *; auto. * elim Hal. subst a. apply nth_In; auto with arith. * elim Hal. subst a. apply nth_In; auto with arith. * f_equal. apply IH; auto with arith. } { induction l as [|a l]; intros H; constructor. * intro Ha. eapply In_nth in Ha. destruct Ha as (n & Hn & Hn'). specialize (H 0 (S n)). simpl in H. discriminate H; eauto with arith. * apply IHl. intros i j Hi Hj E. apply eq_add_S, H; simpl; auto with arith. } Qed. (** Having [NoDup] hypotheses bring more precise facts about [incl]. *) Lemma NoDup_incl_length l l' : NoDup l -> incl l l' -> length l <= length l'. Proof. intros N. revert l'. induction N as [|a l Hal N IH]; simpl. - auto with arith. - intros l' H. destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. } rewrite (Add_length AD). apply le_n_S. apply IH. now apply incl_Add_inv with a l'. Qed. Lemma NoDup_length_incl l l' : NoDup l -> length l' <= length l -> incl l l' -> incl l' l. Proof. intros N. revert l'. induction N as [|a l Hal N IH]. - destruct l'; easy. - intros l' E H x Hx. destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. } rewrite (Add_in AD) in Hx. simpl in Hx. destruct Hx as [Hx|Hx]; [left; trivial|right]. revert x Hx. apply (IH l''); trivial. * apply le_S_n. now rewrite <- (Add_length AD). * now apply incl_Add_inv with a l'. Qed. End ReDun. (** NoDup and map *) (** NB: the reciprocal result holds only for injective functions, see FinFun.v *) Lemma NoDup_map_inv A B (f:A->B) l : NoDup (map f l) -> NoDup l. Proof. induction l; simpl; inversion_clear 1; subst; constructor; auto. intro H. now apply (in_map f) in H. Qed. (***********************************) (** ** Sequence of natural numbers *) (***********************************) Section NatSeq. (** [seq] computes the sequence of [len] contiguous integers that starts at [start]. For instance, [seq 2 3] is [2::3::4::nil]. *) Fixpoint seq (start len:nat) : list nat := match len with | 0 => nil | S len => start :: seq (S start) len end. Lemma seq_length : forall len start, length (seq start len) = len. Proof. induction len; simpl; auto. Qed. Lemma seq_nth : forall len start n d, n < len -> nth n (seq start len) d = start+n. Proof. induction len; intros. inversion H. simpl seq. destruct n; simpl. auto with arith. rewrite IHlen;simpl; auto with arith. Qed. Lemma seq_shift : forall len start, map S (seq start len) = seq (S start) len. Proof. induction len; simpl; auto. intros. rewrite IHlen. auto with arith. Qed. Lemma in_seq len start n : In n (seq start len) <-> start <= n < start+len. Proof. revert start. induction len; simpl; intros. - rewrite <- plus_n_O. split;[easy|]. intros (H,H'). apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')). - rewrite IHlen, <- plus_n_Sm; simpl; split. * intros [H|H]; subst; intuition auto with arith. * intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H); intuition. Qed. Lemma seq_NoDup len start : NoDup (seq start len). Proof. revert start; induction len; simpl; constructor; trivial. rewrite in_seq. intros (H,_). apply (Lt.lt_irrefl _ H). Qed. End NatSeq. Section Exists_Forall. (** * Existential and universal predicates over lists *) Variable A:Type. Section One_predicate. Variable P:A->Prop. Inductive Exists : list A -> Prop := | Exists_cons_hd : forall x l, P x -> Exists (x::l) | Exists_cons_tl : forall x l, Exists l -> Exists (x::l). Hint Constructors Exists. Lemma Exists_exists (l:list A) : Exists l <-> (exists x, In x l /\ P x). Proof. split. - induction 1; firstorder. - induction l; firstorder; subst; auto. Qed. Lemma Exists_nil : Exists nil <-> False. Proof. split; inversion 1. Qed. Lemma Exists_cons x l: Exists (x::l) <-> P x \/ Exists l. Proof. split; inversion 1; auto. Qed. Lemma Exists_dec l: (forall x:A, {P x} + { ~ P x }) -> {Exists l} + {~ Exists l}. Proof. intro Pdec. induction l as [|a l' Hrec]. - right. abstract now rewrite Exists_nil. - destruct Hrec as [Hl'|Hl']. * left. now apply Exists_cons_tl. * destruct (Pdec a) as [Ha|Ha]. + left. now apply Exists_cons_hd. + right. abstract now inversion 1. Defined. Inductive Forall : list A -> Prop := | Forall_nil : Forall nil | Forall_cons : forall x l, P x -> Forall l -> Forall (x::l). Hint Constructors Forall. Lemma Forall_forall (l:list A): Forall l <-> (forall x, In x l -> P x). Proof. split. - induction 1; firstorder; subst; auto. - induction l; firstorder. Qed. Lemma Forall_inv : forall (a:A) l, Forall (a :: l) -> P a. Proof. intros; inversion H; trivial. Qed. Lemma Forall_rect : forall (Q : list A -> Type), Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall l -> Q l. Proof. intros Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption. Qed. Lemma Forall_dec : (forall x:A, {P x} + { ~ P x }) -> forall l:list A, {Forall l} + {~ Forall l}. Proof. intro Pdec. induction l as [|a l' Hrec]. - left. apply Forall_nil. - destruct Hrec as [Hl'|Hl']. + destruct (Pdec a) as [Ha|Ha]. * left. now apply Forall_cons. * right. abstract now inversion 1. + right. abstract now inversion 1. Defined. End One_predicate. Lemma Forall_Exists_neg (P:A->Prop)(l:list A) : Forall (fun x => ~ P x) l <-> ~(Exists P l). Proof. rewrite Forall_forall, Exists_exists. firstorder. Qed. Lemma Exists_Forall_neg (P:A->Prop)(l:list A) : (forall x, P x \/ ~P x) -> Exists (fun x => ~ P x) l <-> ~(Forall P l). Proof. intro Dec. split. - rewrite Forall_forall, Exists_exists; firstorder. - intros NF. induction l as [|a l IH]. + destruct NF. constructor. + destruct (Dec a) as [Ha|Ha]. * apply Exists_cons_tl, IH. contradict NF. now constructor. * now apply Exists_cons_hd. Qed. Lemma neg_Forall_Exists_neg (P:A->Prop) (l:list A) : (forall x:A, {P x} + { ~ P x }) -> ~ Forall P l -> Exists (fun x => ~ P x) l. Proof. intro Dec. apply Exists_Forall_neg; intros. destruct (Dec x); auto. Qed. Lemma Forall_Exists_dec (P:A->Prop) : (forall x:A, {P x} + { ~ P x }) -> forall l:list A, {Forall P l} + {Exists (fun x => ~ P x) l}. Proof. intros Pdec l. destruct (Forall_dec P Pdec l); [left|right]; trivial. now apply neg_Forall_Exists_neg. Defined. Lemma Forall_impl : forall (P Q : A -> Prop), (forall a, P a -> Q a) -> forall l, Forall P l -> Forall Q l. Proof. intros P Q H l. rewrite !Forall_forall. firstorder. Qed. End Exists_Forall. Hint Constructors Exists. Hint Constructors Forall. Section Forall2. (** [Forall2]: stating that elements of two lists are pairwise related. *) Variables A B : Type. Variable R : A -> B -> Prop. Inductive Forall2 : list A -> list B -> Prop := | Forall2_nil : Forall2 [] [] | Forall2_cons : forall x y l l', R x y -> Forall2 l l' -> Forall2 (x::l) (y::l'). Hint Constructors Forall2. Theorem Forall2_refl : Forall2 [] []. Proof. intros; apply Forall2_nil. Qed. Theorem Forall2_app_inv_l : forall l1 l2 l', Forall2 (l1 ++ l2) l' -> exists l1' l2', Forall2 l1 l1' /\ Forall2 l2 l2' /\ l' = l1' ++ l2'. Proof. induction l1; intros. exists [], l'; auto. simpl in H; inversion H; subst; clear H. apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->). exists (y::l1'), l2'; simpl; auto. Qed. Theorem Forall2_app_inv_r : forall l1' l2' l, Forall2 l (l1' ++ l2') -> exists l1 l2, Forall2 l1 l1' /\ Forall2 l2 l2' /\ l = l1 ++ l2. Proof. induction l1'; intros. exists [], l; auto. simpl in H; inversion H; subst; clear H. apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->). exists (x::l1), l2; simpl; auto. Qed. Theorem Forall2_app : forall l1 l2 l1' l2', Forall2 l1 l1' -> Forall2 l2 l2' -> Forall2 (l1 ++ l2) (l1' ++ l2'). Proof. intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto. Qed. End Forall2. Hint Constructors Forall2. Section ForallPairs. (** [ForallPairs] : specifies that a certain relation should always hold when inspecting all possible pairs of elements of a list. *) Variable A : Type. Variable R : A -> A -> Prop. Definition ForallPairs l := forall a b, In a l -> In b l -> R a b. (** [ForallOrdPairs] : we still check a relation over all pairs of elements of a list, but now the order of elements matters. *) Inductive ForallOrdPairs : list A -> Prop := | FOP_nil : ForallOrdPairs nil | FOP_cons : forall a l, Forall (R a) l -> ForallOrdPairs l -> ForallOrdPairs (a::l). Hint Constructors ForallOrdPairs. Lemma ForallOrdPairs_In : forall l, ForallOrdPairs l -> forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x. Proof. induction 1. inversion 1. simpl; destruct 1; destruct 1; subst; auto. right; left. apply -> Forall_forall; eauto. right; right. apply -> Forall_forall; eauto. Qed. (** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true only when [R] is symmetric and reflexive. *) Lemma ForallPairs_ForallOrdPairs l: ForallPairs l -> ForallOrdPairs l. Proof. induction l; auto. intros H. constructor. apply <- Forall_forall. intros; apply H; simpl; auto. apply IHl. red; intros; apply H; simpl; auto. Qed. Lemma ForallOrdPairs_ForallPairs : (forall x, R x x) -> (forall x y, R x y -> R y x) -> forall l, ForallOrdPairs l -> ForallPairs l. Proof. intros Refl Sym l Hl x y Hx Hy. destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition. Qed. End ForallPairs. (** * Inversion of predicates over lists based on head symbol *) Ltac is_list_constr c := match c with | nil => idtac | (_::_) => idtac | _ => fail end. Ltac invlist f := match goal with | H:f ?l |- _ => is_list_constr l; inversion_clear H; invlist f | H:f _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f | H:f _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f | H:f _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f | H:f _ _ _ _ ?l |- _ => is_list_constr l; inversion_clear H; invlist f | _ => idtac end. (** * Exporting hints and tactics *) Hint Rewrite rev_involutive (* rev (rev l) = l *) rev_unit (* rev (l ++ a :: nil) = a :: rev l *) map_nth (* nth n (map f l) (f d) = f (nth n l d) *) map_length (* length (map f l) = length l *) seq_length (* length (seq start len) = len *) app_length (* length (l ++ l') = length l + length l' *) rev_length (* length (rev l) = length l *) app_nil_r (* l ++ nil = l *) : list. Ltac simpl_list := autorewrite with list. Ltac ssimpl_list := autorewrite with list using simpl. (* begin hide *) (* Compatibility notations after the migration of [list] to [Datatypes] *) Notation list := list (only parsing). Notation list_rect := list_rect (only parsing). Notation list_rec := list_rec (only parsing). Notation list_ind := list_ind (only parsing). Notation nil := nil (only parsing). Notation cons := cons (only parsing). Notation length := length (only parsing). Notation app := app (only parsing). (* Compatibility Names *) Notation tail := tl (only parsing). Notation head := hd_error (only parsing). Notation head_nil := hd_error_nil (only parsing). Notation head_cons := hd_error_cons (only parsing). Notation ass_app := app_assoc (only parsing). Notation app_ass := app_assoc_reverse (only parsing). Notation In_split := in_split (only parsing). Notation In_rev := in_rev (only parsing). Notation In_dec := in_dec (only parsing). Notation distr_rev := rev_app_distr (only parsing). Notation rev_acc := rev_append (only parsing). Notation rev_acc_rev := rev_append_rev (only parsing). Notation AllS := Forall (only parsing). (* was formerly in TheoryList *) Hint Resolve app_nil_end : datatypes. (* end hide *) Section Repeat. Variable A : Type. Fixpoint repeat (x : A) (n: nat ) := match n with | O => [] | S k => x::(repeat x k) end. Theorem repeat_length x n: length (repeat x n) = n. Proof. induction n as [| k Hrec]; simpl; rewrite ?Hrec; reflexivity. Qed. Theorem repeat_spec n x y: In y (repeat x n) -> y=x. Proof. induction n as [|k Hrec]; simpl; destruct 1; auto. Qed. End Repeat. (* Unset Universe Polymorphism. *)