(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0 | S u => u end. Hint Resolve (f_equal pred): v62. Theorem pred_Sn : forall n:nat, n = pred (S n). Proof. auto. Qed. Theorem eq_add_S : forall n m:nat, S n = S m -> n = m. Proof. intros n m H; change (pred (S n) = pred (S m)) in |- *; auto. Qed. Hint Immediate eq_add_S: core v62. (** A consequence of the previous axioms *) Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m. Proof. red in |- *; auto. Qed. Hint Resolve not_eq_S: core v62. Definition IsSucc (n:nat) : Prop := match n with | O => False | S p => True end. Theorem O_S : forall n:nat, 0 <> S n. Proof. red in |- *; intros n H. change (IsSucc 0) in |- *. rewrite <- (sym_eq (x:=0) (y:=(S n))); [ exact I | assumption ]. Qed. Hint Resolve O_S: core v62. Theorem n_Sn : forall n:nat, n <> S n. Proof. induction n; auto. Qed. Hint Resolve n_Sn: core v62. (** Addition *) Fixpoint plus (n m:nat) {struct n} : nat := match n with | O => m | S p => S (plus p m) end. Hint Resolve (f_equal2 plus): v62. Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core. Infix "+" := plus : nat_scope. Lemma plus_n_O : forall n:nat, n = n + 0. Proof. induction n; simpl in |- *; auto. Qed. Hint Resolve plus_n_O: core v62. Lemma plus_O_n : forall n:nat, 0 + n = n. Proof. auto. Qed. Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m. Proof. intros n m; induction n; simpl in |- *; auto. Qed. Hint Resolve plus_n_Sm: core v62. Lemma plus_Sn_m : forall n m:nat, S n + m = S (n + m). Proof. auto. Qed. (** Multiplication *) Fixpoint mult (n m:nat) {struct n} : nat := match n with | O => 0 | S p => m + mult p m end. Hint Resolve (f_equal2 mult): core v62. Infix "*" := mult : nat_scope. Lemma mult_n_O : forall n:nat, 0 = n * 0. Proof. induction n; simpl in |- *; auto. Qed. Hint Resolve mult_n_O: core v62. Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m. Proof. intros; induction n as [| p H]; simpl in |- *; auto. destruct H; rewrite <- plus_n_Sm; apply (f_equal S). pattern m at 1 3 in |- *; elim m; simpl in |- *; auto. Qed. Hint Resolve mult_n_Sm: core v62. (** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *) Fixpoint minus (n m:nat) {struct n} : nat := match n, m with | O, _ => 0 | S k, O => S k | S k, S l => minus k l end. Infix "-" := minus : nat_scope. (** Definition of the usual orders, the basic properties of [le] and [lt] can be found in files Le and Lt *) (** An inductive definition to define the order *) Inductive le (n:nat) : nat -> Prop := | le_n : le n n | le_S : forall m:nat, le n m -> le n (S m). Infix "<=" := le : nat_scope. Hint Constructors le: core v62. (*i equivalent to : "Hints Resolve le_n le_S : core v62." i*) Definition lt (n m:nat) := S n <= m. Hint Unfold lt: core v62. Infix "<" := lt : nat_scope. Definition ge (n m:nat) := m <= n. Hint Unfold ge: core v62. Infix ">=" := ge : nat_scope. Definition gt (n m:nat) := m < n. Hint Unfold gt: core v62. Infix ">" := gt : nat_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : nat_scope. Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope. Notation "x < y < z" := (x < y /\ y < z) : nat_scope. Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope. (** Pattern-Matching on natural numbers *) Theorem nat_case : forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n. Proof. induction n; auto. Qed. (** Principle of double induction *) Theorem nat_double_ind : forall R:nat -> nat -> Prop, (forall n:nat, R 0 n) -> (forall n:nat, R (S n) 0) -> (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m. Proof. induction n; auto. destruct m as [| n0]; auto. Qed. (** Notations *)