(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* nat := [n:nat](Cases n of O => O | (S u) => u end). Hint eq_pred : v62 := Resolve (f_equal nat nat pred). Theorem pred_Sn : (m:nat) m=(pred (S m)). Proof. Auto. Qed. Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m. Proof. Intros n m H ; Change (pred (S n))=(pred (S m)); Auto. Qed. Hints Immediate eq_add_S : core v62. (* A consequence of the previous axioms *) Theorem not_eq_S : (n,m:nat) ~(n=m) -> ~((S n)=(S m)). Proof. Red; Auto. Qed. Hints Resolve not_eq_S : core v62. Definition IsSucc : nat->Prop := [n:nat]Cases n of O => False | (S p) => True end. Theorem O_S : (n:nat)~(O=(S n)). Proof. Red;Intros n H. Change (IsSucc O). Elim (sym_eq nat O (S n));[Exact I | Assumption]. Qed. Hints Resolve O_S : core v62. Theorem n_Sn : (n:nat) ~(n=(S n)). Proof. Induction n ; Auto. Qed. Hints Resolve n_Sn : core v62. (*************************************************) (* Addition *) (*************************************************) Fixpoint plus [n:nat] : nat -> nat := [m:nat]Cases n of O => m | (S p) => (S (plus p m)) end. Hint eq_plus : v62 := Resolve (f_equal2 nat nat nat plus). Hint eq_nat_binary : core := Resolve (f_equal2 nat nat). Lemma plus_n_O : (n:nat) n=(plus n O). Proof. Induction n ; Simpl ; Auto. Qed. Hints Resolve plus_n_O : core v62. Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)). Proof. Intros m n; Elim m; Simpl; Auto. Qed. Hints Resolve plus_n_Sm : core v62. (***************************************) (* Multiplication *) (***************************************) Fixpoint mult [n:nat] : nat -> nat := [m:nat]Cases n of O => O | (S p) => (plus m (mult p m)) end. Hint eq_mult : core v62 := Resolve (f_equal2 nat nat nat mult). Lemma mult_n_O : (n:nat) O=(mult n O). Proof. Induction n; Simpl; Auto. Qed. Hints Resolve mult_n_O : core v62. Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)). Proof. Intros; Elim n; Simpl; Auto. Intros p H; Case H; Elim plus_n_Sm; Apply (f_equal nat nat S). Pattern 1 3 m; Elim m; Simpl; Auto. Qed. Hints Resolve mult_n_Sm : core v62. (***********************************************************************) (* Definition of the usual orders, the basic properties of le and lt *) (* can be found in files Le and Lt *) (***********************************************************************) (* An inductive definition to define the order *) Inductive le [n:nat] : nat -> Prop := le_n : (le n n) | le_S : (m:nat)(le n m)->(le n (S m)). Hint constr_le : core v62 := Constructors le. (* equivalent to : "Hints Resolve le_n le_S : core v62." *) Definition lt := [n,m:nat](le (S n) m). Hints Unfold lt : core v62. Definition ge := [n,m:nat](le m n). Hints Unfold ge : core v62. Definition gt := [n,m:nat](lt m n). Hints Unfold gt : core v62. (*********************************************************) (* Pattern-Matching on natural numbers *) (*********************************************************) Theorem nat_case : (n:nat)(P:nat->Prop)(P O)->((m:nat)(P (S m)))->(P n). Proof. Induction n ; Auto. Qed. (**********************************************************) (* Principle of double induction *) (**********************************************************) Theorem nat_double_ind : (R:nat->nat->Prop) ((n:nat)(R O n)) -> ((n:nat)(R (S n) O)) -> ((n,m:nat)(R n m)->(R (S n) (S m))) -> (n,m:nat)(R n m). Proof. Induction n; Auto. Induction m; Auto. Qed.