(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* False. (** Properties of [identity] *) Section identity_is_a_congruence. Variables A B : Type. Variable f : A -> B. Variables x y z : A. Lemma identity_sym : identity x y -> identity y x. Proof. destruct 1; trivial. Defined. Lemma identity_trans : identity x y -> identity y z -> identity x z. Proof. destruct 2; trivial. Defined. Lemma identity_congr : identity x y -> identity (f x) (f y). Proof. destruct 1; trivial. Defined. Lemma not_identity_sym : notT (identity x y) -> notT (identity y x). Proof. red; intros H H'; apply H; destruct H'; trivial. Qed. End identity_is_a_congruence. Definition identity_ind_r : forall (A:Type) (a:A) (P:A -> Prop), P a -> forall y:A, identity y a -> P y. intros A x P H y H0; case identity_sym with (1 := H0); trivial. Defined. Definition identity_rec_r : forall (A:Type) (a:A) (P:A -> Set), P a -> forall y:A, identity y a -> P y. intros A x P H y H0; case identity_sym with (1 := H0); trivial. Defined. Definition identity_rect_r : forall (A:Type) (a:A) (P:A -> Type), P a -> forall y:A, identity y a -> P y. intros A x P H y H0; case identity_sym with (1 := H0); trivial. Defined. Hint Immediate identity_sym not_identity_sym: core. Notation refl_id := identity_refl (only parsing). Notation sym_id := identity_sym (only parsing). Notation trans_id := identity_trans (only parsing). Notation sym_not_id := not_identity_sym (only parsing).