(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* B" := (forall (_ : A), B) : type_scope. (** * Propositional connectives *) (** [True] is the always true proposition *) Inductive True : Prop := I : True. (** [False] is the always false proposition *) Inductive False : Prop :=. (** [not A], written [~A], is the negation of [A] *) Definition not (A:Prop) := A -> False. Notation "~ x" := (not x) : type_scope. (** Create the "core" hint database, and set its transparent state for variables and constants explicitely. *) Create HintDb core. Hint Variables Opaque : core. Hint Constants Opaque : core. Hint Unfold not: core. (** [and A B], written [A /\ B], is the conjunction of [A] and [B] [conj p q] is a proof of [A /\ B] as soon as [p] is a proof of [A] and [q] a proof of [B] [proj1] and [proj2] are first and second projections of a conjunction *) Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B where "A /\ B" := (and A B) : type_scope. Section Conjunction. Variables A B : Prop. Theorem proj1 : A /\ B -> A. Proof. destruct 1; trivial. Qed. Theorem proj2 : A /\ B -> B. Proof. destruct 1; trivial. Qed. End Conjunction. (** [or A B], written [A \/ B], is the disjunction of [A] and [B] *) Inductive or (A B:Prop) : Prop := | or_introl : A -> A \/ B | or_intror : B -> A \/ B where "A \/ B" := (or A B) : type_scope. Arguments or_introl [A B] _, [A] B _. Arguments or_intror [A B] _, A [B] _. (** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *) Definition iff (A B:Prop) := (A -> B) /\ (B -> A). Notation "A <-> B" := (iff A B) : type_scope. Section Equivalence. Theorem iff_refl : forall A:Prop, A <-> A. Proof. split; auto. Qed. Theorem iff_trans : forall A B C:Prop, (A <-> B) -> (B <-> C) -> (A <-> C). Proof. intros A B C [H1 H2] [H3 H4]; split; auto. Qed. Theorem iff_sym : forall A B:Prop, (A <-> B) -> (B <-> A). Proof. intros A B [H1 H2]; split; auto. Qed. End Equivalence. Hint Unfold iff: extcore. (** Backward direction of the equivalences above does not need assumptions *) Theorem and_iff_compat_l : forall A B C : Prop, (B <-> C) -> (A /\ B <-> A /\ C). Proof. intros ? ? ? [Hl Hr]; split; intros [? ?]; (split; [ assumption | ]); [apply Hl | apply Hr]; assumption. Qed. Theorem and_iff_compat_r : forall A B C : Prop, (B <-> C) -> (B /\ A <-> C /\ A). Proof. intros ? ? ? [Hl Hr]; split; intros [? ?]; (split; [ | assumption ]); [apply Hl | apply Hr]; assumption. Qed. Theorem or_iff_compat_l : forall A B C : Prop, (B <-> C) -> (A \/ B <-> A \/ C). Proof. intros ? ? ? [Hl Hr]; split; (intros [?|?]; [left; assumption| right]); [apply Hl | apply Hr]; assumption. Qed. Theorem or_iff_compat_r : forall A B C : Prop, (B <-> C) -> (B \/ A <-> C \/ A). Proof. intros ? ? ? [Hl Hr]; split; (intros [?|?]; [left| right; assumption]); [apply Hl | apply Hr]; assumption. Qed. Theorem imp_iff_compat_l : forall A B C : Prop, (B <-> C) -> ((A -> B) <-> (A -> C)). Proof. intros ? ? ? [Hl Hr]; split; intros H ?; [apply Hl | apply Hr]; apply H; assumption. Qed. Theorem imp_iff_compat_r : forall A B C : Prop, (B <-> C) -> ((B -> A) <-> (C -> A)). Proof. intros ? ? ? [Hl Hr]; split; intros H ?; [apply H, Hr | apply H, Hl]; assumption. Qed. Theorem not_iff_compat : forall A B : Prop, (A <-> B) -> (~ A <-> ~B). Proof. intros; apply imp_iff_compat_r; assumption. Qed. (** Some equivalences *) Theorem neg_false : forall A : Prop, ~ A <-> (A <-> False). Proof. intro A; unfold not; split. - intro H; split; [exact H | intro H1; elim H1]. - intros [H _]; exact H. Qed. Theorem and_cancel_l : forall A B C : Prop, (B -> A) -> (C -> A) -> ((A /\ B <-> A /\ C) <-> (B <-> C)). Proof. intros A B C Hl Hr. split; [ | apply and_iff_compat_l]; intros [HypL HypR]; split; intros. + apply HypL; split; [apply Hl | ]; assumption. + apply HypR; split; [apply Hr | ]; assumption. Qed. Theorem and_cancel_r : forall A B C : Prop, (B -> A) -> (C -> A) -> ((B /\ A <-> C /\ A) <-> (B <-> C)). Proof. intros A B C Hl Hr. split; [ | apply and_iff_compat_r]; intros [HypL HypR]; split; intros. + apply HypL; split; [ | apply Hl ]; assumption. + apply HypR; split; [ | apply Hr ]; assumption. Qed. Theorem and_comm : forall A B : Prop, A /\ B <-> B /\ A. Proof. intros; split; intros [? ?]; split; assumption. Qed. Theorem and_assoc : forall A B C : Prop, (A /\ B) /\ C <-> A /\ B /\ C. Proof. intros; split; [ intros [[? ?] ?]| intros [? [? ?]]]; repeat split; assumption. Qed. Theorem or_cancel_l : forall A B C : Prop, (B -> ~ A) -> (C -> ~ A) -> ((A \/ B <-> A \/ C) <-> (B <-> C)). Proof. intros ? ? ? Fl Fr; split; [ | apply or_iff_compat_l]; intros [Hl Hr]; split; intros. { destruct Hl; [ right | destruct Fl | ]; assumption. } { destruct Hr; [ right | destruct Fr | ]; assumption. } Qed. Theorem or_cancel_r : forall A B C : Prop, (B -> ~ A) -> (C -> ~ A) -> ((B \/ A <-> C \/ A) <-> (B <-> C)). Proof. intros ? ? ? Fl Fr; split; [ | apply or_iff_compat_r]; intros [Hl Hr]; split; intros. { destruct Hl; [ left | | destruct Fl ]; assumption. } { destruct Hr; [ left | | destruct Fr ]; assumption. } Qed. Theorem or_comm : forall A B : Prop, (A \/ B) <-> (B \/ A). Proof. intros; split; (intros [? | ?]; [ right | left ]; assumption). Qed. Theorem or_assoc : forall A B C : Prop, (A \/ B) \/ C <-> A \/ B \/ C. Proof. intros; split; [ intros [[?|?]|?]| intros [?|[?|?]]]. + left; assumption. + right; left; assumption. + right; right; assumption. + left; left; assumption. + left; right; assumption. + right; assumption. Qed. Lemma iff_and : forall A B : Prop, (A <-> B) -> (A -> B) /\ (B -> A). Proof. intros A B []; split; trivial. Qed. Lemma iff_to_and : forall A B : Prop, (A <-> B) <-> (A -> B) /\ (B -> A). Proof. intros; split; intros [Hl Hr]; (split; intros; [ apply Hl | apply Hr]); assumption. Qed. (** [(IF_then_else P Q R)], written [IF P then Q else R] denotes either [P] and [Q], or [~P] and [R] *) Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R. Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3) (at level 200, right associativity) : type_scope. (** * First-order quantifiers *) (** [ex P], or simply [exists x, P x], or also [exists x:A, P x], expresses the existence of an [x] of some type [A] in [Set] which satisfies the predicate [P]. This is existential quantification. [ex2 P Q], or simply [exists2 x, P x & Q x], or also [exists2 x:A, P x & Q x], expresses the existence of an [x] of type [A] which satisfies both predicates [P] and [Q]. Universal quantification is primitively written [forall x:A, Q]. By symmetry with existential quantification, the construction [all P] is provided too. *) Inductive ex (A:Type) (P:A -> Prop) : Prop := ex_intro : forall x:A, P x -> ex (A:=A) P. Inductive ex2 (A:Type) (P Q:A -> Prop) : Prop := ex_intro2 : forall x:A, P x -> Q x -> ex2 (A:=A) P Q. Definition all (A:Type) (P:A -> Prop) := forall x:A, P x. (* Rule order is important to give printing priority to fully typed exists *) Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..)) (at level 200, x binder, right associativity, format "'[' 'exists' '/ ' x .. y , '/ ' p ']'") : type_scope. Notation "'exists2' x , p & q" := (ex2 (fun x => p) (fun x => q)) (at level 200, x ident, p at level 200, right associativity) : type_scope. Notation "'exists2' x : A , p & q" := (ex2 (A:=A) (fun x => p) (fun x => q)) (at level 200, x ident, A at level 200, p at level 200, right associativity, format "'[' 'exists2' '/ ' x : A , '/ ' '[' p & '/' q ']' ']'") : type_scope. Notation "'exists2' ' x , p & q" := (ex2 (fun x => p) (fun x => q)) (at level 200, x strict pattern, p at level 200, right associativity) : type_scope. Notation "'exists2' ' x : A , p & q" := (ex2 (A:=A) (fun x => p) (fun x => q)) (at level 200, x strict pattern, A at level 200, p at level 200, right associativity, format "'[' 'exists2' '/ ' ' x : A , '/ ' '[' p & '/' q ']' ']'") : type_scope. (** Derived rules for universal quantification *) Section universal_quantification. Variable A : Type. Variable P : A -> Prop. Theorem inst : forall x:A, all (fun x => P x) -> P x. Proof. unfold all; auto. Qed. Theorem gen : forall (B:Prop) (f:forall y:A, B -> P y), B -> all P. Proof. red; auto. Qed. End universal_quantification. (** * Equality *) (** [eq x y], or simply [x=y] expresses the equality of [x] and [y]. Both [x] and [y] must belong to the same type [A]. The definition is inductive and states the reflexivity of the equality. The others properties (symmetry, transitivity, replacement of equals by equals) are proved below. The type of [x] and [y] can be made explicit using the notation [x = y :> A]. This is Leibniz equality as it expresses that [x] and [y] are equal iff every property on [A] which is true of [x] is also true of [y] *) Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : x = x :>A where "x = y :> A" := (@eq A x y) : type_scope. Notation "x = y" := (x = y :>_) : type_scope. Notation "x <> y :> T" := (~ x = y :>T) : type_scope. Notation "x <> y" := (x <> y :>_) : type_scope. Arguments eq {A} x _. Arguments eq_refl {A x} , [A] x. Arguments eq_ind [A] x P _ y _. Arguments eq_rec [A] x P _ y _. Arguments eq_rect [A] x P _ y _. Hint Resolve I conj or_introl or_intror : core. Hint Resolve eq_refl: core. Hint Resolve ex_intro ex_intro2: core. Section Logic_lemmas. Theorem absurd : forall A C:Prop, A -> ~ A -> C. Proof. unfold not; intros A C h1 h2. destruct (h2 h1). Qed. Section equality. Variables A B : Type. Variable f : A -> B. Variables x y z : A. Theorem eq_sym : x = y -> y = x. Proof. destruct 1; trivial. Defined. Theorem eq_trans : x = y -> y = z -> x = z. Proof. destruct 2; trivial. Defined. Theorem f_equal : x = y -> f x = f y. Proof. destruct 1; trivial. Defined. Theorem not_eq_sym : x <> y -> y <> x. Proof. red; intros h1 h2; apply h1; destruct h2; trivial. Qed. End equality. Definition eq_ind_r : forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y. intros A x P H y H0. elim eq_sym with (1 := H0); assumption. Defined. Definition eq_rec_r : forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y. intros A x P H y H0; elim eq_sym with (1 := H0); assumption. Defined. Definition eq_rect_r : forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y. intros A x P H y H0; elim eq_sym with (1 := H0); assumption. Defined. End Logic_lemmas. Module EqNotations. Notation "'rew' H 'in' H'" := (eq_rect _ _ H' _ H) (at level 10, H' at level 10, format "'[' 'rew' H in '/' H' ']'"). Notation "'rew' [ P ] H 'in' H'" := (eq_rect _ P H' _ H) (at level 10, H' at level 10, format "'[' 'rew' [ P ] '/ ' H in '/' H' ']'"). Notation "'rew' <- H 'in' H'" := (eq_rect_r _ H' H) (at level 10, H' at level 10, format "'[' 'rew' <- H in '/' H' ']'"). Notation "'rew' <- [ P ] H 'in' H'" := (eq_rect_r P H' H) (at level 10, H' at level 10, format "'[' 'rew' <- [ P ] '/ ' H in '/' H' ']'"). Notation "'rew' -> H 'in' H'" := (eq_rect _ _ H' _ H) (at level 10, H' at level 10, only parsing). Notation "'rew' -> [ P ] H 'in' H'" := (eq_rect _ P H' _ H) (at level 10, H' at level 10, only parsing). End EqNotations. Import EqNotations. Lemma rew_opp_r : forall A (P:A->Type) (x y:A) (H:x=y) (a:P y), rew H in rew <- H in a = a. Proof. intros. destruct H. reflexivity. Defined. Lemma rew_opp_l : forall A (P:A->Type) (x y:A) (H:x=y) (a:P x), rew <- H in rew H in a = a. Proof. intros. destruct H. reflexivity. Defined. Theorem f_equal2 : forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1) (x2 y2:A2), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2. Proof. destruct 1; destruct 1; reflexivity. Qed. Theorem f_equal3 : forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1) (x2 y2:A2) (x3 y3:A3), x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3. Proof. destruct 1; destruct 1; destruct 1; reflexivity. Qed. Theorem f_equal4 : forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B) (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4), x1 = y1 -> x2 = y2 -> x3 = y3 -> x4 = y4 -> f x1 x2 x3 x4 = f y1 y2 y3 y4. Proof. destruct 1; destruct 1; destruct 1; destruct 1; reflexivity. Qed. Theorem f_equal5 : forall (A1 A2 A3 A4 A5 B:Type) (f:A1 -> A2 -> A3 -> A4 -> A5 -> B) (x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4) (x5 y5:A5), x1 = y1 -> x2 = y2 -> x3 = y3 -> x4 = y4 -> x5 = y5 -> f x1 x2 x3 x4 x5 = f y1 y2 y3 y4 y5. Proof. destruct 1; destruct 1; destruct 1; destruct 1; destruct 1; reflexivity. Qed. Theorem f_equal_compose : forall A B C (a b:A) (f:A->B) (g:B->C) (e:a=b), f_equal g (f_equal f e) = f_equal (fun a => g (f a)) e. Proof. destruct e. reflexivity. Defined. (** The groupoid structure of equality *) Theorem eq_trans_refl_l : forall A (x y:A) (e:x=y), eq_trans eq_refl e = e. Proof. destruct e. reflexivity. Defined. Theorem eq_trans_refl_r : forall A (x y:A) (e:x=y), eq_trans e eq_refl = e. Proof. destruct e. reflexivity. Defined. Theorem eq_sym_involutive : forall A (x y:A) (e:x=y), eq_sym (eq_sym e) = e. Proof. destruct e; reflexivity. Defined. Theorem eq_trans_sym_inv_l : forall A (x y:A) (e:x=y), eq_trans (eq_sym e) e = eq_refl. Proof. destruct e; reflexivity. Defined. Theorem eq_trans_sym_inv_r : forall A (x y:A) (e:x=y), eq_trans e (eq_sym e) = eq_refl. Proof. destruct e; reflexivity. Defined. Theorem eq_trans_assoc : forall A (x y z t:A) (e:x=y) (e':y=z) (e'':z=t), eq_trans e (eq_trans e' e'') = eq_trans (eq_trans e e') e''. Proof. destruct e''; reflexivity. Defined. (** Extra properties of equality *) Theorem eq_id_comm_l : forall A (f:A->A) (Hf:forall a, a = f a), forall a, f_equal f (Hf a) = Hf (f a). Proof. intros. unfold f_equal. rewrite <- (eq_trans_sym_inv_l (Hf a)). destruct (Hf a) at 1 2. destruct (Hf a). reflexivity. Defined. Theorem eq_id_comm_r : forall A (f:A->A) (Hf:forall a, f a = a), forall a, f_equal f (Hf a) = Hf (f a). Proof. intros. unfold f_equal. rewrite <- (eq_trans_sym_inv_l (Hf (f (f a)))). set (Hfsymf := fun a => eq_sym (Hf a)). change (eq_sym (Hf (f (f a)))) with (Hfsymf (f (f a))). pattern (Hfsymf (f (f a))). destruct (eq_id_comm_l f Hfsymf (f a)). destruct (eq_id_comm_l f Hfsymf a). unfold Hfsymf. destruct (Hf a). simpl. rewrite eq_trans_refl_l. reflexivity. Defined. Lemma eq_refl_map_distr : forall A B x (f:A->B), f_equal f (eq_refl x) = eq_refl (f x). Proof. reflexivity. Qed. Lemma eq_trans_map_distr : forall A B x y z (f:A->B) (e:x=y) (e':y=z), f_equal f (eq_trans e e') = eq_trans (f_equal f e) (f_equal f e'). Proof. destruct e'. reflexivity. Defined. Lemma eq_sym_map_distr : forall A B (x y:A) (f:A->B) (e:x=y), eq_sym (f_equal f e) = f_equal f (eq_sym e). Proof. destruct e. reflexivity. Defined. Lemma eq_trans_sym_distr : forall A (x y z:A) (e:x=y) (e':y=z), eq_sym (eq_trans e e') = eq_trans (eq_sym e') (eq_sym e). Proof. destruct e, e'. reflexivity. Defined. Lemma eq_trans_rew_distr : forall A (P:A -> Type) (x y z:A) (e:x=y) (e':y=z) (k:P x), rew (eq_trans e e') in k = rew e' in rew e in k. Proof. destruct e, e'; reflexivity. Qed. Lemma rew_const : forall A P (x y:A) (e:x=y) (k:P), rew [fun _ => P] e in k = k. Proof. destruct e; reflexivity. Qed. (* Aliases *) Notation sym_eq := eq_sym (only parsing). Notation trans_eq := eq_trans (only parsing). Notation sym_not_eq := not_eq_sym (only parsing). Notation refl_equal := eq_refl (only parsing). Notation sym_equal := eq_sym (only parsing). Notation trans_equal := eq_trans (only parsing). Notation sym_not_equal := not_eq_sym (only parsing). Hint Immediate eq_sym not_eq_sym: core. (** Basic definitions about relations and properties *) Definition subrelation (A B : Type) (R R' : A->B->Prop) := forall x y, R x y -> R' x y. Definition unique (A : Type) (P : A->Prop) (x:A) := P x /\ forall (x':A), P x' -> x=x'. Definition uniqueness (A:Type) (P:A->Prop) := forall x y, P x -> P y -> x = y. (** Unique existence *) Notation "'exists' ! x .. y , p" := (ex (unique (fun x => .. (ex (unique (fun y => p))) ..))) (at level 200, x binder, right associativity, format "'[' 'exists' ! '/ ' x .. y , '/ ' p ']'") : type_scope. Lemma unique_existence : forall (A:Type) (P:A->Prop), ((exists x, P x) /\ uniqueness P) <-> (exists! x, P x). Proof. intros A P; split. - intros ((x,Hx),Huni); exists x; red; auto. - intros (x,(Hx,Huni)); split. + exists x; assumption. + intros x' x'' Hx' Hx''; transitivity x. symmetry; auto. auto. Qed. Lemma forall_exists_unique_domain_coincide : forall A (P:A->Prop), (exists! x, P x) -> forall Q:A->Prop, (forall x, P x -> Q x) <-> (exists x, P x /\ Q x). Proof. intros A P (x & Hp & Huniq); split. - intro; exists x; auto. - intros (x0 & HPx0 & HQx0) x1 HPx1. assert (H : x0 = x1) by (transitivity x; [symmetry|]; auto). destruct H. assumption. Qed. Lemma forall_exists_coincide_unique_domain : forall A (P:A->Prop), (forall Q:A->Prop, (forall x, P x -> Q x) <-> (exists x, P x /\ Q x)) -> (exists! x, P x). Proof. intros A P H. destruct H with (Q:=P) as ((x & Hx & _),_); [trivial|]. exists x. split; [trivial|]. destruct H with (Q:=fun x'=>x=x') as (_,Huniq). apply Huniq. exists x; auto. Qed. (** * Being inhabited *) (** The predicate [inhabited] can be used in different contexts. If [A] is thought as a type, [inhabited A] states that [A] is inhabited. If [A] is thought as a computationally relevant proposition, then [inhabited A] weakens [A] so as to hide its computational meaning. The so-weakened proof remains computationally relevant but only in a propositional context. *) Inductive inhabited (A:Type) : Prop := inhabits : A -> inhabited A. Hint Resolve inhabits: core. Lemma exists_inhabited : forall (A:Type) (P:A->Prop), (exists x, P x) -> inhabited A. Proof. destruct 1; auto. Qed. Lemma inhabited_covariant (A B : Type) : (A -> B) -> inhabited A -> inhabited B. Proof. intros f [x];exact (inhabits (f x)). Qed. (** Declaration of stepl and stepr for eq and iff *) Lemma eq_stepl : forall (A : Type) (x y z : A), x = y -> x = z -> z = y. Proof. intros A x y z H1 H2. rewrite <- H2; exact H1. Qed. Declare Left Step eq_stepl. Declare Right Step eq_trans. Lemma iff_stepl : forall A B C : Prop, (A <-> B) -> (A <-> C) -> (C <-> B). Proof. intros ? ? ? [? ?] [? ?]; split; intros; auto. Qed. Declare Left Step iff_stepl. Declare Right Step iff_trans. Local Notation "'rew' 'dependent' H 'in' H'" := (match H with | eq_refl => H' end) (at level 10, H' at level 10, format "'[' 'rew' 'dependent' '/ ' H in '/' H' ']'"). (** Equality for [ex] *) Section ex. Local Unset Implicit Arguments. Definition eq_ex_uncurried {A : Type} (P : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1} (pq : exists p : u1 = v1, rew p in u2 = v2) : ex_intro P u1 u2 = ex_intro P v1 v2. Proof. destruct pq as [p q]. destruct q; simpl in *. destruct p; reflexivity. Qed. Definition eq_ex {A : Type} {P : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1) (p : u1 = v1) (q : rew p in u2 = v2) : ex_intro P u1 u2 = ex_intro P v1 v2 := eq_ex_uncurried P (ex_intro _ p q). Definition eq_ex_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) (u1 v1 : A) (u2 : P u1) (v2 : P v1) (p : u1 = v1) : ex_intro P u1 u2 = ex_intro P v1 v2 := eq_ex u1 v1 u2 v2 p (P_hprop _ _ _). Lemma rew_ex {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : exists p, Q x p) {y} (H : x = y) : rew [fun a => exists p, Q a p] H in u = match u with | ex_intro _ u1 u2 => ex_intro (Q y) (rew H in u1) (rew dependent H in u2) end. Proof. destruct H, u; reflexivity. Qed. End ex. (** Equality for [ex2] *) Section ex2. Local Unset Implicit Arguments. Definition eq_ex2_uncurried {A : Type} (P Q : A -> Prop) {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1} (pq : exists2 p : u1 = v1, rew p in u2 = v2 & rew p in u3 = v3) : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3. Proof. destruct pq as [p q r]. destruct r, q, p; simpl in *. reflexivity. Qed. Definition eq_ex2 {A : Type} {P Q : A -> Prop} (u1 v1 : A) (u2 : P u1) (v2 : P v1) (u3 : Q u1) (v3 : Q v1) (p : u1 = v1) (q : rew p in u2 = v2) (r : rew p in u3 = v3) : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3 := eq_ex2_uncurried P Q (ex_intro2 _ _ p q r). Definition eq_ex2_hprop {A} {P Q : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q) (Q_hprop : forall (x : A) (p q : Q x), p = q) (u1 v1 : A) (u2 : P u1) (v2 : P v1) (u3 : Q u1) (v3 : Q v1) (p : u1 = v1) : ex_intro2 P Q u1 u2 u3 = ex_intro2 P Q v1 v2 v3 := eq_ex2 u1 v1 u2 v2 u3 v3 p (P_hprop _ _ _) (Q_hprop _ _ _). Lemma rew_ex2 {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (R : forall a, P a -> Prop) (u : exists2 p, Q x p & R x p) {y} (H : x = y) : rew [fun a => exists2 p, Q a p & R a p] H in u = match u with | ex_intro2 _ _ u1 u2 u3 => ex_intro2 (Q y) (R y) (rew H in u1) (rew dependent H in u2) (rew dependent H in u3) end. Proof. destruct H, u; reflexivity. Qed. End ex2.