(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* constructor; congruence. (** First, a functor for Weak Sets in functorial version. *) Module WProperties_fun (Import E : DecidableType)(M : WSfun E). Module Import Dec := WDecide_fun E M. Module Import FM := Dec.F (* FSetFacts.WFacts_fun E M *). Import M. Lemma In_dec : forall x s, {In x s} + {~ In x s}. Proof. intros; generalize (mem_iff s x); case (mem x s); intuition. Qed. Definition Add x s s' := forall y, In y s' <-> E.eq x y \/ In y s. Lemma Add_Equal : forall x s s', Add x s s' <-> s' [=] add x s. Proof. unfold Add. split; intros. red; intros. rewrite H; clear H. fsetdec. fsetdec. Qed. Ltac expAdd := repeat rewrite Add_Equal. Section BasicProperties. Variable s s' s'' s1 s2 s3 : t. Variable x x' : elt. Lemma equal_refl : s[=]s. Proof. fsetdec. Qed. Lemma equal_sym : s[=]s' -> s'[=]s. Proof. fsetdec. Qed. Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3. Proof. fsetdec. Qed. Lemma subset_refl : s[<=]s. Proof. fsetdec. Qed. Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3. Proof. fsetdec. Qed. Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'. Proof. fsetdec. Qed. Lemma subset_equal : s[=]s' -> s[<=]s'. Proof. fsetdec. Qed. Lemma subset_empty : empty[<=]s. Proof. fsetdec. Qed. Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2. Proof. fsetdec. Qed. Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3. Proof. fsetdec. Qed. Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2. Proof. fsetdec. Qed. Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2. Proof. fsetdec. Qed. Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2. Proof. fsetdec. Qed. Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1. Proof. intuition fsetdec. Qed. Lemma empty_is_empty_1 : Empty s -> s[=]empty. Proof. fsetdec. Qed. Lemma empty_is_empty_2 : s[=]empty -> Empty s. Proof. fsetdec. Qed. Lemma add_equal : In x s -> add x s [=] s. Proof. fsetdec. Qed. Lemma add_add : add x (add x' s) [=] add x' (add x s). Proof. fsetdec. Qed. Lemma remove_equal : ~ In x s -> remove x s [=] s. Proof. fsetdec. Qed. Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'. Proof. fsetdec. Qed. Lemma add_remove : In x s -> add x (remove x s) [=] s. Proof. fsetdec. Qed. Lemma remove_add : ~In x s -> remove x (add x s) [=] s. Proof. fsetdec. Qed. Lemma singleton_equal_add : singleton x [=] add x empty. Proof. fsetdec. Qed. Lemma remove_singleton_empty : In x s -> remove x s [=] empty -> singleton x [=] s. Proof. fsetdec. Qed. Lemma union_sym : union s s' [=] union s' s. Proof. fsetdec. Qed. Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'. Proof. fsetdec. Qed. Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''. Proof. fsetdec. Qed. Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''. Proof. fsetdec. Qed. Lemma union_assoc : union (union s s') s'' [=] union s (union s' s''). Proof. fsetdec. Qed. Lemma add_union_singleton : add x s [=] union (singleton x) s. Proof. fsetdec. Qed. Lemma union_add : union (add x s) s' [=] add x (union s s'). Proof. fsetdec. Qed. Lemma union_remove_add_1 : union (remove x s) (add x s') [=] union (add x s) (remove x s'). Proof. fsetdec. Qed. Lemma union_remove_add_2 : In x s -> union (remove x s) (add x s') [=] union s s'. Proof. fsetdec. Qed. Lemma union_subset_1 : s [<=] union s s'. Proof. fsetdec. Qed. Lemma union_subset_2 : s' [<=] union s s'. Proof. fsetdec. Qed. Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''. Proof. fsetdec. Qed. Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''. Proof. fsetdec. Qed. Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'. Proof. fsetdec. Qed. Lemma empty_union_1 : Empty s -> union s s' [=] s'. Proof. fsetdec. Qed. Lemma empty_union_2 : Empty s -> union s' s [=] s'. Proof. fsetdec. Qed. Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s'). Proof. fsetdec. Qed. Lemma inter_sym : inter s s' [=] inter s' s. Proof. fsetdec. Qed. Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s. Proof. fsetdec. Qed. Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''. Proof. fsetdec. Qed. Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''. Proof. fsetdec. Qed. Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s''). Proof. fsetdec. Qed. Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s''). Proof. fsetdec. Qed. Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s''). Proof. fsetdec. Qed. Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s'). Proof. fsetdec. Qed. Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'. Proof. fsetdec. Qed. Lemma empty_inter_1 : Empty s -> Empty (inter s s'). Proof. fsetdec. Qed. Lemma empty_inter_2 : Empty s' -> Empty (inter s s'). Proof. fsetdec. Qed. Lemma inter_subset_1 : inter s s' [<=] s. Proof. fsetdec. Qed. Lemma inter_subset_2 : inter s s' [<=] s'. Proof. fsetdec. Qed. Lemma inter_subset_3 : s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'. Proof. fsetdec. Qed. Lemma empty_diff_1 : Empty s -> Empty (diff s s'). Proof. fsetdec. Qed. Lemma empty_diff_2 : Empty s -> diff s' s [=] s'. Proof. fsetdec. Qed. Lemma diff_subset : diff s s' [<=] s. Proof. fsetdec. Qed. Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty. Proof. fsetdec. Qed. Lemma remove_diff_singleton : remove x s [=] diff s (singleton x). Proof. fsetdec. Qed. Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty. Proof. fsetdec. Qed. Lemma diff_inter_all : union (diff s s') (inter s s') [=] s. Proof. fsetdec. Qed. Lemma Add_add : Add x s (add x s). Proof. expAdd; fsetdec. Qed. Lemma Add_remove : In x s -> Add x (remove x s) s. Proof. expAdd; fsetdec. Qed. Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s''). Proof. expAdd; fsetdec. Qed. Lemma inter_Add : In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s''). Proof. expAdd; fsetdec. Qed. Lemma union_Equal : In x s'' -> Add x s s' -> union s s'' [=] union s' s''. Proof. expAdd; fsetdec. Qed. Lemma inter_Add_2 : ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''. Proof. expAdd; fsetdec. Qed. End BasicProperties. Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set. Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym subset_trans subset_empty subset_remove_3 subset_diff subset_add_3 subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal remove_equal singleton_equal_add union_subset_equal union_equal_1 union_equal_2 union_assoc add_union_singleton union_add union_subset_1 union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2 inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2 empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1 empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove Equal_remove add_add : set. (** * Properties of elements *) Lemma elements_Empty : forall s, Empty s <-> elements s = nil. Proof. intros. unfold Empty. split; intros. assert (forall a, ~ List.In a (elements s)). red; intros. apply (H a). rewrite elements_iff. rewrite InA_alt; exists a; auto. destruct (elements s); auto. elim (H0 e); simpl; auto. red; intros. rewrite elements_iff in H0. rewrite InA_alt in H0; destruct H0. rewrite H in H0; destruct H0 as (_,H0); inversion H0. Qed. Lemma elements_empty : elements empty = nil. Proof. rewrite <-elements_Empty; auto with set. Qed. (** * Conversions between lists and sets *) Definition of_list (l : list elt) := List.fold_right add empty l. Definition to_list := elements. Lemma of_list_1 : forall l x, In x (of_list l) <-> InA E.eq x l. Proof. induction l; simpl; intro x. rewrite empty_iff, InA_nil. intuition. rewrite add_iff, InA_cons, IHl. intuition. Qed. Lemma of_list_2 : forall l, equivlistA E.eq (to_list (of_list l)) l. Proof. unfold to_list; red; intros. rewrite <- elements_iff; apply of_list_1. Qed. Lemma of_list_3 : forall s, of_list (to_list s) [=] s. Proof. unfold to_list; red; intros. rewrite of_list_1; symmetry; apply elements_iff. Qed. (** * Fold *) Section Fold. (** Alternative specification via [fold_right] *) Lemma fold_spec_right (s:t)(A:Type)(i:A)(f : elt -> A -> A) : fold f s i = List.fold_right f i (rev (elements s)). Proof. rewrite fold_1. symmetry. apply fold_left_rev_right. Qed. Notation NoDup := (NoDupA E.eq). Notation InA := (InA E.eq). (** ** Induction principles for fold (contributed by S. Lescuyer) *) (** In the following lemma, the step hypothesis is deliberately restricted to the precise set s we are considering. *) Theorem fold_rec : forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t), (forall s', Empty s' -> P s' i) -> (forall x a s' s'', In x s -> ~In x s' -> Add x s' s'' -> P s' a -> P s'' (f x a)) -> P s (fold f s i). Proof. intros A P f i s Pempty Pstep. rewrite fold_spec_right. set (l:=rev (elements s)). assert (Pstep' : forall x a s' s'', InA x l -> ~In x s' -> Add x s' s'' -> P s' a -> P s'' (f x a)). intros; eapply Pstep; eauto. rewrite elements_iff, <- InA_rev; auto with *. assert (Hdup : NoDup l) by (unfold l; eauto using elements_3w, NoDupA_rev with *). assert (Hsame : forall x, In x s <-> InA x l) by (unfold l; intros; rewrite elements_iff, InA_rev; intuition). clear Pstep; clearbody l; revert s Hsame; induction l. (* empty *) intros s Hsame; simpl. apply Pempty. intro x. rewrite Hsame, InA_nil; intuition. (* step *) intros s Hsame; simpl. apply Pstep' with (of_list l); auto. inversion_clear Hdup; rewrite of_list_1; auto. red. intros. rewrite Hsame, of_list_1, InA_cons; intuition. apply IHl. intros; eapply Pstep'; eauto. inversion_clear Hdup; auto. exact (of_list_1 l). Qed. (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this case, [P] must be compatible with equality of sets *) Theorem fold_rec_bis : forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t), (forall s s' a, s[=]s' -> P s a -> P s' a) -> (P empty i) -> (forall x a s', In x s -> ~In x s' -> P s' a -> P (add x s') (f x a)) -> P s (fold f s i). Proof. intros A P f i s Pmorphism Pempty Pstep. apply fold_rec; intros. apply Pmorphism with empty; auto with set. rewrite Add_Equal in H1; auto with set. apply Pmorphism with (add x s'); auto with set. Qed. Lemma fold_rec_nodep : forall (A:Type)(P : A -> Type)(f : elt -> A -> A)(i:A)(s:t), P i -> (forall x a, In x s -> P a -> P (f x a)) -> P (fold f s i). Proof. intros; apply fold_rec_bis with (P:=fun _ => P); auto. Qed. (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] : the step hypothesis must here be applicable to any [x]. At the same time, it looks more like an induction principle, and hence can be easier to use. *) Lemma fold_rec_weak : forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A), (forall s s' a, s[=]s' -> P s a -> P s' a) -> P empty i -> (forall x a s, ~In x s -> P s a -> P (add x s) (f x a)) -> forall s, P s (fold f s i). Proof. intros; apply fold_rec_bis; auto. Qed. Lemma fold_rel : forall (A B:Type)(R : A -> B -> Type) (f : elt -> A -> A)(g : elt -> B -> B)(i : A)(j : B)(s : t), R i j -> (forall x a b, In x s -> R a b -> R (f x a) (g x b)) -> R (fold f s i) (fold g s j). Proof. intros A B R f g i j s Rempty Rstep. rewrite 2 fold_spec_right. set (l:=rev (elements s)). assert (Rstep' : forall x a b, InA x l -> R a b -> R (f x a) (g x b)) by (intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto with *). clearbody l; clear Rstep s. induction l; simpl; auto. Qed. (** From the induction principle on [fold], we can deduce some general induction principles on sets. *) Lemma set_induction : forall P : t -> Type, (forall s, Empty s -> P s) -> (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') -> forall s, P s. Proof. intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto. Qed. Lemma set_induction_bis : forall P : t -> Type, (forall s s', s [=] s' -> P s -> P s') -> P empty -> (forall x s, ~In x s -> P s -> P (add x s)) -> forall s, P s. Proof. intros. apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto. Qed. (** [fold] can be used to reconstruct the same initial set. *) Lemma fold_identity : forall s, fold add s empty [=] s. Proof. intros. apply fold_rec with (P:=fun s acc => acc[=]s); auto with set. intros. rewrite H2; rewrite Add_Equal in H1; auto with set. Qed. (** ** Alternative (weaker) specifications for [fold] *) (** When [FSets] was first designed, the order in which Ocaml's [Set.fold] takes the set elements was unspecified. This specification reflects this fact: *) Lemma fold_0 : forall s (A : Type) (i : A) (f : elt -> A -> A), exists l : list elt, NoDup l /\ (forall x : elt, In x s <-> InA x l) /\ fold f s i = fold_right f i l. Proof. intros; exists (rev (elements s)); split. apply NoDupA_rev; auto with *. split; intros. rewrite elements_iff; do 2 rewrite InA_alt. split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition. apply fold_spec_right. Qed. (** An alternate (and previous) specification for [fold] was based on the recursive structure of a set. It is now lemmas [fold_1] and [fold_2]. *) Lemma fold_1 : forall s (A : Type) (eqA : A -> A -> Prop) (st : Equivalence eqA) (i : A) (f : elt -> A -> A), Empty s -> eqA (fold f s i) i. Proof. unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))). rewrite H3; clear H3. generalize H H2; clear H H2; case l; simpl; intros. reflexivity. elim (H e). elim (H2 e); intuition. Qed. Lemma fold_2 : forall s s' x (A : Type) (eqA : A -> A -> Prop) (st : Equivalence eqA) (i : A) (f : elt -> A -> A), compat_op E.eq eqA f -> transpose eqA f -> ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)). Proof. intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2))); destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))). rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2. apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto with *. rewrite <- Hl1; auto. intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1; rewrite (H2 a); intuition. Qed. (** In fact, [fold] on empty sets is more than equivalent to the initial element, it is Leibniz-equal to it. *) Lemma fold_1b : forall s (A : Type)(i : A) (f : elt -> A -> A), Empty s -> (fold f s i) = i. Proof. intros. rewrite M.fold_1. rewrite elements_Empty in H; rewrite H; simpl; auto. Qed. Section Fold_More. Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA). Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f). Lemma fold_commutes : forall i s x, eqA (fold f s (f x i)) (f x (fold f s i)). Proof. intros. apply fold_rel with (R:=fun u v => eqA u (f x v)); intros. reflexivity. transitivity (f x0 (f x b)); auto. apply Comp; auto with *. Qed. (** ** Fold is a morphism *) Lemma fold_init : forall i i' s, eqA i i' -> eqA (fold f s i) (fold f s i'). Proof. intros. apply fold_rel with (R:=eqA); auto. intros; apply Comp; auto with *. Qed. Lemma fold_equal : forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i). Proof. intros i s; pattern s; apply set_induction; clear s; intros. transitivity i. apply fold_1; auto. symmetry; apply fold_1; auto. rewrite <- H0; auto. transitivity (f x (fold f s i)). apply fold_2 with (eqA := eqA); auto. symmetry; apply fold_2 with (eqA := eqA); auto. unfold Add in *; intros. rewrite <- H2; auto. Qed. (** ** Fold and other set operators *) Lemma fold_empty : forall i, fold f empty i = i. Proof. intros i; apply fold_1b; auto with set. Qed. Lemma fold_add : forall i s x, ~In x s -> eqA (fold f (add x s) i) (f x (fold f s i)). Proof. intros; apply fold_2 with (eqA := eqA); auto with set. Qed. Lemma add_fold : forall i s x, In x s -> eqA (fold f (add x s) i) (fold f s i). Proof. intros; apply fold_equal; auto with set. Qed. Lemma remove_fold_1: forall i s x, In x s -> eqA (f x (fold f (remove x s) i)) (fold f s i). Proof. intros. symmetry. apply fold_2 with (eqA:=eqA); auto with set. Qed. Lemma remove_fold_2: forall i s x, ~In x s -> eqA (fold f (remove x s) i) (fold f s i). Proof. intros. apply fold_equal; auto with set. Qed. Lemma fold_union_inter : forall i s s', eqA (fold f (union s s') (fold f (inter s s') i)) (fold f s (fold f s' i)). Proof. intros; pattern s; apply set_induction; clear s; intros. transitivity (fold f s' (fold f (inter s s') i)). apply fold_equal; auto with set. transitivity (fold f s' i). apply fold_init; auto. apply fold_1; auto with set. symmetry; apply fold_1; auto. rename s'0 into s''. destruct (In_dec x s'). (* In x s' *) transitivity (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set. apply fold_init; auto. apply fold_2 with (eqA:=eqA); auto with set. rewrite inter_iff; intuition. transitivity (f x (fold f s (fold f s' i))). transitivity (fold f (union s s') (f x (fold f (inter s s') i))). apply fold_equal; auto. apply equal_sym; apply union_Equal with x; auto with set. transitivity (f x (fold f (union s s') (fold f (inter s s') i))). apply fold_commutes; auto. apply Comp; auto. symmetry; apply fold_2 with (eqA:=eqA); auto. (* ~(In x s') *) transitivity (f x (fold f (union s s') (fold f (inter s'' s') i))). apply fold_2 with (eqA:=eqA); auto with set. transitivity (f x (fold f (union s s') (fold f (inter s s') i))). apply Comp;auto. apply fold_init;auto. apply fold_equal;auto. apply equal_sym; apply inter_Add_2 with x; auto with set. transitivity (f x (fold f s (fold f s' i))). apply Comp; auto. symmetry; apply fold_2 with (eqA:=eqA); auto. Qed. Lemma fold_diff_inter : forall i s s', eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i). Proof. intros. transitivity (fold f (union (diff s s') (inter s s')) (fold f (inter (diff s s') (inter s s')) i)). symmetry; apply fold_union_inter; auto. transitivity (fold f s (fold f (inter (diff s s') (inter s s')) i)). apply fold_equal; auto with set. apply fold_init; auto. apply fold_1; auto with set. Qed. Lemma fold_union: forall i s s', (forall x, ~(In x s/\In x s')) -> eqA (fold f (union s s') i) (fold f s (fold f s' i)). Proof. intros. transitivity (fold f (union s s') (fold f (inter s s') i)). apply fold_init; auto. symmetry; apply fold_1; auto with set. unfold Empty; intro a; generalize (H a); set_iff; tauto. apply fold_union_inter; auto. Qed. End Fold_More. Lemma fold_plus : forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p. Proof. intros. apply fold_rel with (R:=fun u v => u = v + p); simpl; auto. Qed. End Fold. (** * Cardinal *) (** ** Characterization of cardinal in terms of fold *) Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0. Proof. intros; rewrite cardinal_1; rewrite M.fold_1. symmetry; apply fold_left_length; auto. Qed. (** ** Old specifications for [cardinal]. *) Lemma cardinal_0 : forall s, exists l : list elt, NoDupA E.eq l /\ (forall x : elt, In x s <-> InA E.eq x l) /\ cardinal s = length l. Proof. intros; exists (elements s); intuition; apply cardinal_1. Qed. Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0. Proof. intros; rewrite cardinal_fold; apply fold_1; auto. Qed. Lemma cardinal_2 : forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s). Proof. intros; do 2 rewrite cardinal_fold. change S with ((fun _ => S) x). apply fold_2; auto. Qed. (** ** Cardinal and (non-)emptiness *) Lemma cardinal_Empty : forall s, Empty s <-> cardinal s = 0. Proof. intros. rewrite elements_Empty, M.cardinal_1. destruct (elements s); intuition; discriminate. Qed. Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s. Proof. intros; rewrite cardinal_Empty; auto. Qed. Hint Resolve cardinal_inv_1. Lemma cardinal_inv_2 : forall s n, cardinal s = S n -> { x : elt | In x s }. Proof. intros; rewrite M.cardinal_1 in H. generalize (elements_2 (s:=s)). destruct (elements s); try discriminate. exists e; auto. Qed. Lemma cardinal_inv_2b : forall s, cardinal s <> 0 -> { x : elt | In x s }. Proof. intro; generalize (@cardinal_inv_2 s); destruct cardinal; [intuition|eauto]. Qed. (** ** Cardinal is a morphism *) Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'. Proof. symmetry. remember (cardinal s) as n; symmetry in Heqn; revert s s' Heqn H. induction n; intros. apply cardinal_1; rewrite <- H; auto. destruct (cardinal_inv_2 Heqn) as (x,H2). revert Heqn. rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set. rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); eauto with set. Qed. Add Morphism cardinal with signature (Equal ==> Logic.eq) as cardinal_m. Proof. exact Equal_cardinal. Qed. Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal. (** ** Cardinal and set operators *) Lemma empty_cardinal : cardinal empty = 0. Proof. rewrite cardinal_fold; apply fold_1; auto with set. Qed. Hint Immediate empty_cardinal cardinal_1 : set. Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1. Proof. intros. rewrite (singleton_equal_add x). replace 0 with (cardinal empty); auto with set. apply cardinal_2 with x; auto with set. Qed. Hint Resolve singleton_cardinal: set. Lemma diff_inter_cardinal : forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s . Proof. intros; do 3 rewrite cardinal_fold. rewrite <- fold_plus. apply fold_diff_inter with (eqA:=@Logic.eq nat); auto. Qed. Lemma union_cardinal: forall s s', (forall x, ~(In x s/\In x s')) -> cardinal (union s s')=cardinal s+cardinal s'. Proof. intros; do 3 rewrite cardinal_fold. rewrite <- fold_plus. apply fold_union; auto. Qed. Lemma subset_cardinal : forall s s', s[<=]s' -> cardinal s <= cardinal s' . Proof. intros. rewrite <- (diff_inter_cardinal s' s). rewrite (inter_sym s' s). rewrite (inter_subset_equal H); auto with arith. Qed. Lemma subset_cardinal_lt : forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'. Proof. intros. rewrite <- (diff_inter_cardinal s' s). rewrite (inter_sym s' s). rewrite (inter_subset_equal H). generalize (@cardinal_inv_1 (diff s' s)). destruct (cardinal (diff s' s)). intro H2; destruct (H2 Logic.eq_refl x). set_iff; auto. intros _. change (0 + cardinal s < S n + cardinal s). apply Plus.plus_lt_le_compat; auto with arith. Qed. Theorem union_inter_cardinal : forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' . Proof. intros. do 4 rewrite cardinal_fold. do 2 rewrite <- fold_plus. apply fold_union_inter with (eqA:=@Logic.eq nat); auto. Qed. Lemma union_cardinal_inter : forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s'). Proof. intros. rewrite <- union_inter_cardinal. rewrite Plus.plus_comm. auto with arith. Qed. Lemma union_cardinal_le : forall s s', cardinal (union s s') <= cardinal s + cardinal s'. Proof. intros; generalize (union_inter_cardinal s s'). intros; rewrite <- H; auto with arith. Qed. Lemma add_cardinal_1 : forall s x, In x s -> cardinal (add x s) = cardinal s. Proof. auto with set. Qed. Lemma add_cardinal_2 : forall s x, ~In x s -> cardinal (add x s) = S (cardinal s). Proof. intros. do 2 rewrite cardinal_fold. change S with ((fun _ => S) x); apply fold_add with (eqA:=@Logic.eq nat); auto. Qed. Lemma remove_cardinal_1 : forall s x, In x s -> S (cardinal (remove x s)) = cardinal s. Proof. intros. do 2 rewrite cardinal_fold. change S with ((fun _ =>S) x). apply remove_fold_1 with (eqA:=@Logic.eq nat); auto. Qed. Lemma remove_cardinal_2 : forall s x, ~In x s -> cardinal (remove x s) = cardinal s. Proof. auto with set. Qed. Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2. End WProperties_fun. (** Now comes variants for self-contained weak sets and for full sets. For these variants, only one argument is necessary. Thanks to the subtyping [WS<=S], the [Properties] functor which is meant to be used on modules [(M:S)] can simply be an alias of [WProperties]. *) Module WProperties (M:WS) := WProperties_fun M.E M. Module Properties := WProperties. (** Now comes some properties specific to the element ordering, invalid for Weak Sets. *) Module OrdProperties (M:S). Module ME:=OrderedTypeFacts(M.E). Module Import P := Properties M. Import FM. Import M.E. Import M. (** First, a specialized version of SortA_equivlistA_eqlistA: *) Lemma sort_equivlistA_eqlistA : forall l l' : list elt, sort E.lt l -> sort E.lt l' -> equivlistA E.eq l l' -> eqlistA E.eq l l'. Proof. apply SortA_equivlistA_eqlistA; eauto with *. Qed. Definition gtb x y := match E.compare x y with GT _ => true | _ => false end. Definition leb x := fun y => negb (gtb x y). Definition elements_lt x s := List.filter (gtb x) (elements s). Definition elements_ge x s := List.filter (leb x) (elements s). Lemma gtb_1 : forall x y, gtb x y = true <-> E.lt y x. Proof. intros; unfold gtb; destruct (E.compare x y); intuition; try discriminate; ME.order. Qed. Lemma leb_1 : forall x y, leb x y = true <-> ~E.lt y x. Proof. intros; unfold leb, gtb; destruct (E.compare x y); intuition; try discriminate; ME.order. Qed. Lemma gtb_compat : forall x, Proper (E.eq==>Logic.eq) (gtb x). Proof. red; intros x a b H. generalize (gtb_1 x a)(gtb_1 x b); destruct (gtb x a); destruct (gtb x b); auto. intros. symmetry; rewrite H1. apply ME.eq_lt with a; auto. rewrite <- H0; auto. intros. rewrite H0. apply ME.eq_lt with b; auto. rewrite <- H1; auto. Qed. Lemma leb_compat : forall x, Proper (E.eq==>Logic.eq) (leb x). Proof. red; intros x a b H; unfold leb. f_equal; apply gtb_compat; auto. Qed. Hint Resolve gtb_compat leb_compat. Lemma elements_split : forall x s, elements s = elements_lt x s ++ elements_ge x s. Proof. unfold elements_lt, elements_ge, leb; intros. eapply (@filter_split _ E.eq _ E.lt); auto with *. intros. rewrite gtb_1 in H. assert (~E.lt y x). unfold gtb in *; destruct (E.compare x y); intuition; try discriminate; ME.order. ME.order. Qed. Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' -> eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s). Proof. intros; unfold elements_ge, elements_lt. apply sort_equivlistA_eqlistA; auto with set. apply (@SortA_app _ E.eq); auto with *. apply (@filter_sort _ E.eq); auto with *. constructor; auto. apply (@filter_sort _ E.eq); auto with *. rewrite ME.Inf_alt by (apply (@filter_sort _ E.eq); eauto with *). intros. rewrite filter_InA in H1; auto with *; destruct H1. rewrite leb_1 in H2. rewrite <- elements_iff in H1. assert (~E.eq x y). contradict H; rewrite H; auto. ME.order. intros. rewrite filter_InA in H1; auto with *; destruct H1. rewrite gtb_1 in H3. inversion_clear H2. ME.order. rewrite filter_InA in H4; auto with *; destruct H4. rewrite leb_1 in H4. ME.order. red; intros a. rewrite InA_app_iff, InA_cons, !filter_InA, <-elements_iff, leb_1, gtb_1, (H0 a) by auto with *. intuition. destruct (E.compare a x); intuition. fold (~E.lt a x); auto with *. Qed. Definition Above x s := forall y, In y s -> E.lt y x. Definition Below x s := forall y, In y s -> E.lt x y. Lemma elements_Add_Above : forall s s' x, Above x s -> Add x s s' -> eqlistA E.eq (elements s') (elements s ++ x::nil). Proof. intros. apply sort_equivlistA_eqlistA; auto with *. apply (@SortA_app _ E.eq); auto with *. intros. inversion_clear H2. rewrite <- elements_iff in H1. apply ME.lt_eq with x; auto. inversion H3. red; intros a. rewrite InA_app_iff, InA_cons, InA_nil by auto with *. do 2 rewrite <- elements_iff; rewrite (H0 a); intuition. Qed. Lemma elements_Add_Below : forall s s' x, Below x s -> Add x s s' -> eqlistA E.eq (elements s') (x::elements s). Proof. intros. apply sort_equivlistA_eqlistA; auto with *. change (sort E.lt ((x::nil) ++ elements s)). apply (@SortA_app _ E.eq); auto with *. intros. inversion_clear H1. rewrite <- elements_iff in H2. apply ME.eq_lt with x; auto. inversion H3. red; intros a. rewrite InA_cons. do 2 rewrite <- elements_iff; rewrite (H0 a); intuition. Qed. (** Two other induction principles on sets: we can be more restrictive on the element we add at each step. *) Lemma set_induction_max : forall P : t -> Type, (forall s : t, Empty s -> P s) -> (forall s s', P s -> forall x, Above x s -> Add x s s' -> P s') -> forall s : t, P s. Proof. intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto. case_eq (max_elt s); intros. apply X0 with (remove e s) e; auto with set. apply IHn. assert (S n = S (cardinal (remove e s))). rewrite Heqn; apply cardinal_2 with e; auto with set. inversion H0; auto. red; intros. rewrite remove_iff in H0; destruct H0. generalize (@max_elt_2 s e y H H0); ME.order. assert (H0:=max_elt_3 H). rewrite cardinal_Empty in H0; rewrite H0 in Heqn; inversion Heqn. Qed. Lemma set_induction_min : forall P : t -> Type, (forall s : t, Empty s -> P s) -> (forall s s', P s -> forall x, Below x s -> Add x s s' -> P s') -> forall s : t, P s. Proof. intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto. case_eq (min_elt s); intros. apply X0 with (remove e s) e; auto with set. apply IHn. assert (S n = S (cardinal (remove e s))). rewrite Heqn; apply cardinal_2 with e; auto with set. inversion H0; auto. red; intros. rewrite remove_iff in H0; destruct H0. generalize (@min_elt_2 s e y H H0); ME.order. assert (H0:=min_elt_3 H). rewrite cardinal_Empty in H0; auto; rewrite H0 in Heqn; inversion Heqn. Qed. (** More properties of [fold] : behavior with respect to Above/Below *) Lemma fold_3 : forall s s' x (A : Type) (eqA : A -> A -> Prop) (st : Equivalence eqA) (i : A) (f : elt -> A -> A), compat_op E.eq eqA f -> Above x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)). Proof. intros. rewrite 2 fold_spec_right. change (f x (fold_right f i (rev (elements s)))) with (fold_right f i (rev (x::nil)++rev (elements s))). apply (@fold_right_eqlistA E.t E.eq A eqA st); auto. rewrite <- distr_rev. apply eqlistA_rev. apply elements_Add_Above; auto. Qed. Lemma fold_4 : forall s s' x (A : Type) (eqA : A -> A -> Prop) (st : Equivalence eqA) (i : A) (f : elt -> A -> A), compat_op E.eq eqA f -> Below x s -> Add x s s' -> eqA (fold f s' i) (fold f s (f x i)). Proof. intros. rewrite 2 M.fold_1. set (g:=fun (a : A) (e : elt) => f e a). change (eqA (fold_left g (elements s') i) (fold_left g (x::elements s) i)). unfold g. rewrite <- 2 fold_left_rev_right. apply (@fold_right_eqlistA E.t E.eq A eqA st); auto. apply eqlistA_rev. apply elements_Add_Below; auto. Qed. (** The following results have already been proved earlier, but we can now prove them with one hypothesis less: no need for [(transpose eqA f)]. *) Section FoldOpt. Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA). Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f). Lemma fold_equal : forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i). Proof. intros. rewrite 2 fold_spec_right. apply (@fold_right_eqlistA E.t E.eq A eqA st); auto. apply eqlistA_rev. apply sort_equivlistA_eqlistA; auto with set. red; intro a; do 2 rewrite <- elements_iff; auto. Qed. Lemma add_fold : forall i s x, In x s -> eqA (fold f (add x s) i) (fold f s i). Proof. intros; apply fold_equal; auto with set. Qed. Lemma remove_fold_2: forall i s x, ~In x s -> eqA (fold f (remove x s) i) (fold f s i). Proof. intros. apply fold_equal; auto with set. Qed. End FoldOpt. (** An alternative version of [choose_3] *) Lemma choose_equal : forall s s', Equal s s' -> match choose s, choose s' with | Some x, Some x' => E.eq x x' | None, None => True | _, _ => False end. Proof. intros s s' H; generalize (@choose_1 s)(@choose_2 s) (@choose_1 s')(@choose_2 s')(@choose_3 s s'); destruct (choose s); destruct (choose s'); simpl; intuition. apply H5 with e; rewrite <-H; auto. apply H5 with e; rewrite H; auto. Qed. End OrdProperties.