(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* mem x s=mem y s. Proof. intro H; rewrite H; auto. Qed. Lemma equal_mem_1: (forall a, mem a s=mem a s') -> equal s s'=true. Proof. intros; apply equal_1; unfold Equal; intros. do 2 rewrite mem_iff; rewrite H; tauto. Qed. Lemma equal_mem_2: equal s s'=true -> forall a, mem a s=mem a s'. Proof. intros; rewrite (equal_2 H); auto. Qed. Lemma subset_mem_1: (forall a, mem a s=true->mem a s'=true) -> subset s s'=true. Proof. intros; apply subset_1; unfold Subset; intros a. do 2 rewrite mem_iff; auto. Qed. Lemma subset_mem_2: subset s s'=true -> forall a, mem a s=true -> mem a s'=true. Proof. intros H a; do 2 rewrite <- mem_iff; apply subset_2; auto. Qed. Lemma empty_mem: mem x empty=false. Proof. rewrite <- not_mem_iff; auto with set. Qed. Lemma is_empty_equal_empty: is_empty s = equal s empty. Proof. apply bool_1; split; intros. rewrite <- (empty_is_empty_1 (s:=empty)); auto with set. rewrite <- is_empty_iff; auto with set. Qed. Lemma choose_mem_1: choose s=Some x -> mem x s=true. Proof. auto with set. Qed. Lemma choose_mem_2: choose s=None -> is_empty s=true. Proof. auto with set. Qed. Lemma add_mem_1: mem x (add x s)=true. Proof. auto with set. Qed. Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s. Proof. apply add_neq_b. Qed. Lemma remove_mem_1: mem x (remove x s)=false. Proof. rewrite <- not_mem_iff; auto with set. Qed. Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s. Proof. apply remove_neq_b. Qed. Lemma singleton_equal_add: equal (singleton x) (add x empty)=true. Proof. rewrite (singleton_equal_add x); auto with set. Qed. Lemma union_mem: mem x (union s s')=mem x s || mem x s'. Proof. apply union_b. Qed. Lemma inter_mem: mem x (inter s s')=mem x s && mem x s'. Proof. apply inter_b. Qed. Lemma diff_mem: mem x (diff s s')=mem x s && negb (mem x s'). Proof. apply diff_b. Qed. (** properties of [mem] *) Lemma mem_3 : ~In x s -> mem x s=false. Proof. intros; rewrite <- not_mem_iff; auto. Qed. Lemma mem_4 : mem x s=false -> ~In x s. Proof. intros; rewrite not_mem_iff; auto. Qed. (** Properties of [equal] *) Lemma equal_refl: equal s s=true. Proof. auto with set. Qed. Lemma equal_sym: equal s s'=equal s' s. Proof. intros; apply bool_1; do 2 rewrite <- equal_iff; intuition. Qed. Lemma equal_trans: equal s s'=true -> equal s' s''=true -> equal s s''=true. Proof. intros; rewrite (equal_2 H); auto. Qed. Lemma equal_equal: equal s s'=true -> equal s s''=equal s' s''. Proof. intros; rewrite (equal_2 H); auto. Qed. Lemma equal_cardinal: equal s s'=true -> cardinal s=cardinal s'. Proof. auto with set. Qed. (* Properties of [subset] *) Lemma subset_refl: subset s s=true. Proof. auto with set. Qed. Lemma subset_antisym: subset s s'=true -> subset s' s=true -> equal s s'=true. Proof. auto with set. Qed. Lemma subset_trans: subset s s'=true -> subset s' s''=true -> subset s s''=true. Proof. do 3 rewrite <- subset_iff; intros. apply subset_trans with s'; auto. Qed. Lemma subset_equal: equal s s'=true -> subset s s'=true. Proof. auto with set. Qed. (** Properties of [choose] *) Lemma choose_mem_3: is_empty s=false -> {x:elt|choose s=Some x /\ mem x s=true}. Proof. intros. generalize (@choose_1 s) (@choose_2 s). destruct (choose s);intros. exists e;auto with set. generalize (H1 (refl_equal None)); clear H1. intros; rewrite (is_empty_1 H1) in H; discriminate. Qed. Lemma choose_mem_4: choose empty=None. Proof. generalize (@choose_1 empty). case (@choose empty);intros;auto. elim (@empty_1 e); auto. Qed. (** Properties of [add] *) Lemma add_mem_3: mem y s=true -> mem y (add x s)=true. Proof. auto with set. Qed. Lemma add_equal: mem x s=true -> equal (add x s) s=true. Proof. auto with set. Qed. (** Properties of [remove] *) Lemma remove_mem_3: mem y (remove x s)=true -> mem y s=true. Proof. rewrite remove_b; intros H;destruct (andb_prop _ _ H); auto. Qed. Lemma remove_equal: mem x s=false -> equal (remove x s) s=true. Proof. intros; apply equal_1; apply remove_equal. rewrite not_mem_iff; auto. Qed. Lemma add_remove: mem x s=true -> equal (add x (remove x s)) s=true. Proof. intros; apply equal_1; apply add_remove; auto with set. Qed. Lemma remove_add: mem x s=false -> equal (remove x (add x s)) s=true. Proof. intros; apply equal_1; apply remove_add; auto. rewrite not_mem_iff; auto. Qed. (** Properties of [is_empty] *) Lemma is_empty_cardinal: is_empty s = zerob (cardinal s). Proof. intros; apply bool_1; split; intros. rewrite MP.cardinal_1; simpl; auto with set. assert (cardinal s = 0) by (apply zerob_true_elim; auto). auto with set. Qed. (** Properties of [singleton] *) Lemma singleton_mem_1: mem x (singleton x)=true. Proof. auto with set. Qed. Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false. Proof. intros; rewrite singleton_b. unfold eqb; destruct (eq_dec x y); intuition. Qed. Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y. Proof. intros; apply singleton_1; auto with set. Qed. (** Properties of [union] *) Lemma union_sym: equal (union s s') (union s' s)=true. Proof. auto with set. Qed. Lemma union_subset_equal: subset s s'=true -> equal (union s s') s'=true. Proof. auto with set. Qed. Lemma union_equal_1: equal s s'=true-> equal (union s s'') (union s' s'')=true. Proof. auto with set. Qed. Lemma union_equal_2: equal s' s''=true-> equal (union s s') (union s s'')=true. Proof. auto with set. Qed. Lemma union_assoc: equal (union (union s s') s'') (union s (union s' s''))=true. Proof. auto with set. Qed. Lemma add_union_singleton: equal (add x s) (union (singleton x) s)=true. Proof. auto with set. Qed. Lemma union_add: equal (union (add x s) s') (add x (union s s'))=true. Proof. auto with set. Qed. (* caracterisation of [union] via [subset] *) Lemma union_subset_1: subset s (union s s')=true. Proof. auto with set. Qed. Lemma union_subset_2: subset s' (union s s')=true. Proof. auto with set. Qed. Lemma union_subset_3: subset s s''=true -> subset s' s''=true -> subset (union s s') s''=true. Proof. intros; apply subset_1; apply union_subset_3; auto with set. Qed. (** Properties of [inter] *) Lemma inter_sym: equal (inter s s') (inter s' s)=true. Proof. auto with set. Qed. Lemma inter_subset_equal: subset s s'=true -> equal (inter s s') s=true. Proof. auto with set. Qed. Lemma inter_equal_1: equal s s'=true -> equal (inter s s'') (inter s' s'')=true. Proof. auto with set. Qed. Lemma inter_equal_2: equal s' s''=true -> equal (inter s s') (inter s s'')=true. Proof. auto with set. Qed. Lemma inter_assoc: equal (inter (inter s s') s'') (inter s (inter s' s''))=true. Proof. auto with set. Qed. Lemma union_inter_1: equal (inter (union s s') s'') (union (inter s s'') (inter s' s''))=true. Proof. auto with set. Qed. Lemma union_inter_2: equal (union (inter s s') s'') (inter (union s s'') (union s' s''))=true. Proof. auto with set. Qed. Lemma inter_add_1: mem x s'=true -> equal (inter (add x s) s') (add x (inter s s'))=true. Proof. auto with set. Qed. Lemma inter_add_2: mem x s'=false -> equal (inter (add x s) s') (inter s s')=true. Proof. intros; apply equal_1; apply inter_add_2. rewrite not_mem_iff; auto. Qed. (* caracterisation of [union] via [subset] *) Lemma inter_subset_1: subset (inter s s') s=true. Proof. auto with set. Qed. Lemma inter_subset_2: subset (inter s s') s'=true. Proof. auto with set. Qed. Lemma inter_subset_3: subset s'' s=true -> subset s'' s'=true -> subset s'' (inter s s')=true. Proof. intros; apply subset_1; apply inter_subset_3; auto with set. Qed. (** Properties of [diff] *) Lemma diff_subset: subset (diff s s') s=true. Proof. auto with set. Qed. Lemma diff_subset_equal: subset s s'=true -> equal (diff s s') empty=true. Proof. auto with set. Qed. Lemma remove_inter_singleton: equal (remove x s) (diff s (singleton x))=true. Proof. auto with set. Qed. Lemma diff_inter_empty: equal (inter (diff s s') (inter s s')) empty=true. Proof. auto with set. Qed. Lemma diff_inter_all: equal (union (diff s s') (inter s s')) s=true. Proof. auto with set. Qed. End BasicProperties. Hint Immediate empty_mem is_empty_equal_empty add_mem_1 remove_mem_1 singleton_equal_add union_mem inter_mem diff_mem equal_sym add_remove remove_add : set. Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1 choose_mem_2 add_mem_2 remove_mem_2 equal_refl equal_equal subset_refl subset_equal subset_antisym add_mem_3 add_equal remove_mem_3 remove_equal : set. (** General recursion principle *) Lemma set_rec: forall (P:t->Type), (forall s s', equal s s'=true -> P s -> P s') -> (forall s x, mem x s=false -> P s -> P (add x s)) -> P empty -> forall s, P s. Proof. intros. apply set_induction; auto; intros. apply X with empty; auto with set. apply X with (add x s0); auto with set. apply equal_1; intro a; rewrite add_iff; rewrite (H0 a); tauto. apply X0; auto with set; apply mem_3; auto. Qed. (** Properties of [fold] *) Lemma exclusive_set : forall s s' x, ~(In x s/\In x s') <-> mem x s && mem x s'=false. Proof. intros; do 2 rewrite mem_iff. destruct (mem x s); destruct (mem x s'); intuition. Qed. Section Fold. Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA). Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f). Variables (i:A). Variables (s s':t)(x:elt). Lemma fold_empty: (fold f empty i) = i. Proof. apply fold_empty; auto. Qed. Lemma fold_equal: equal s s'=true -> eqA (fold f s i) (fold f s' i). Proof. intros; apply fold_equal with (eqA:=eqA); auto with set. Qed. Lemma fold_add: mem x s=false -> eqA (fold f (add x s) i) (f x (fold f s i)). Proof. intros; apply fold_add with (eqA:=eqA); auto. rewrite not_mem_iff; auto. Qed. Lemma add_fold: mem x s=true -> eqA (fold f (add x s) i) (fold f s i). Proof. intros; apply add_fold with (eqA:=eqA); auto with set. Qed. Lemma remove_fold_1: mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i). Proof. intros; apply remove_fold_1 with (eqA:=eqA); auto with set. Qed. Lemma remove_fold_2: mem x s=false -> eqA (fold f (remove x s) i) (fold f s i). Proof. intros; apply remove_fold_2 with (eqA:=eqA); auto. rewrite not_mem_iff; auto. Qed. Lemma fold_union: (forall x, mem x s && mem x s'=false) -> eqA (fold f (union s s') i) (fold f s (fold f s' i)). Proof. intros; apply fold_union with (eqA:=eqA); auto. intros; rewrite exclusive_set; auto. Qed. End Fold. (** Properties of [cardinal] *) Lemma add_cardinal_1: forall s x, mem x s=true -> cardinal (add x s)=cardinal s. Proof. auto with set. Qed. Lemma add_cardinal_2: forall s x, mem x s=false -> cardinal (add x s)=S (cardinal s). Proof. intros; apply add_cardinal_2; auto. rewrite not_mem_iff; auto. Qed. Lemma remove_cardinal_1: forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s. Proof. intros; apply remove_cardinal_1; auto with set. Qed. Lemma remove_cardinal_2: forall s x, mem x s=false -> cardinal (remove x s)=cardinal s. Proof. intros; apply Equal_cardinal; apply equal_2; auto with set. Qed. Lemma union_cardinal: forall s s', (forall x, mem x s && mem x s'=false) -> cardinal (union s s')=cardinal s+cardinal s'. Proof. intros; apply union_cardinal; auto; intros. rewrite exclusive_set; auto. Qed. Lemma subset_cardinal: forall s s', subset s s'=true -> cardinal s<=cardinal s'. Proof. intros; apply subset_cardinal; auto with set. Qed. Section Bool. (** Properties of [filter] *) Variable f:elt->bool. Variable Comp: compat_bool E.eq f. Let Comp' : compat_bool E.eq (fun x =>negb (f x)). Proof. unfold compat_bool in *; intros; f_equal; auto. Qed. Lemma filter_mem: forall s x, mem x (filter f s)=mem x s && f x. Proof. intros; apply filter_b; auto. Qed. Lemma for_all_filter: forall s, for_all f s=is_empty (filter (fun x => negb (f x)) s). Proof. intros; apply bool_1; split; intros. apply is_empty_1. unfold Empty; intros. rewrite filter_iff; auto. red; destruct 1. rewrite <- (@for_all_iff s f) in H; auto. rewrite (H a H0) in H1; discriminate. apply for_all_1; auto; red; intros. revert H; rewrite <- is_empty_iff. unfold Empty; intro H; generalize (H x); clear H. rewrite filter_iff; auto. destruct (f x); auto. Qed. Lemma exists_filter : forall s, exists_ f s=negb (is_empty (filter f s)). Proof. intros; apply bool_1; split; intros. destruct (exists_2 Comp H) as (a,(Ha1,Ha2)). apply bool_6. red; intros; apply (@is_empty_2 _ H0 a); auto with set. generalize (@choose_1 (filter f s)) (@choose_2 (filter f s)). destruct (choose (filter f s)). intros H0 _; apply exists_1; auto. exists e; generalize (H0 e); rewrite filter_iff; auto. intros _ H0. rewrite (is_empty_1 (H0 (refl_equal None))) in H; auto; discriminate. Qed. Lemma partition_filter_1: forall s, equal (fst (partition f s)) (filter f s)=true. Proof. auto with set. Qed. Lemma partition_filter_2: forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true. Proof. auto with set. Qed. Lemma filter_add_1 : forall s x, f x = true -> filter f (add x s) [=] add x (filter f s). Proof. red; intros; set_iff; do 2 (rewrite filter_iff; auto); set_iff. intuition. rewrite <- H; apply Comp; auto. Qed. Lemma filter_add_2 : forall s x, f x = false -> filter f (add x s) [=] filter f s. Proof. red; intros; do 2 (rewrite filter_iff; auto); set_iff. intuition. assert (f x = f a) by (apply Comp; auto). rewrite H in H1; rewrite H2 in H1; discriminate. Qed. Lemma add_filter_1 : forall s s' x, f x=true -> (Add x s s') -> (Add x (filter f s) (filter f s')). Proof. unfold Add, MP.Add; intros. repeat rewrite filter_iff; auto. rewrite H0; clear H0. assert (E.eq x y -> f y = true) by (intro H0; rewrite <- (Comp _ _ H0); auto). tauto. Qed. Lemma add_filter_2 : forall s s' x, f x=false -> (Add x s s') -> filter f s [=] filter f s'. Proof. unfold Add, MP.Add, Equal; intros. repeat rewrite filter_iff; auto. rewrite H0; clear H0. assert (f a = true -> ~E.eq x a). intros H0 H1. rewrite (Comp _ _ H1) in H. rewrite H in H0; discriminate. tauto. Qed. Lemma union_filter: forall f g, (compat_bool E.eq f) -> (compat_bool E.eq g) -> forall s, union (filter f s) (filter g s) [=] filter (fun x=>orb (f x) (g x)) s. Proof. clear Comp' Comp f. intros. assert (compat_bool E.eq (fun x => orb (f x) (g x))). unfold compat_bool; intros. rewrite (H x y H1); rewrite (H0 x y H1); auto. unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto. assert (f a || g a = true <-> f a = true \/ g a = true). split; auto with bool. intro H3; destruct (orb_prop _ _ H3); auto. tauto. Qed. Lemma filter_union: forall s s', filter f (union s s') [=] union (filter f s) (filter f s'). Proof. unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto; set_iff; tauto. Qed. (** Properties of [for_all] *) Lemma for_all_mem_1: forall s, (forall x, (mem x s)=true->(f x)=true) -> (for_all f s)=true. Proof. intros. rewrite for_all_filter; auto. rewrite is_empty_equal_empty. apply equal_mem_1;intros. rewrite filter_b; auto. rewrite empty_mem. generalize (H a); case (mem a s);intros;auto. rewrite H0;auto. Qed. Lemma for_all_mem_2: forall s, (for_all f s)=true -> forall x,(mem x s)=true -> (f x)=true. Proof. intros. rewrite for_all_filter in H; auto. rewrite is_empty_equal_empty in H. generalize (equal_mem_2 _ _ H x). rewrite filter_b; auto. rewrite empty_mem. rewrite H0; simpl;intros. replace true with (negb false);auto;apply negb_sym;auto. Qed. Lemma for_all_mem_3: forall s x,(mem x s)=true -> (f x)=false -> (for_all f s)=false. Proof. intros. apply (bool_eq_ind (for_all f s));intros;auto. rewrite for_all_filter in H1; auto. rewrite is_empty_equal_empty in H1. generalize (equal_mem_2 _ _ H1 x). rewrite filter_b; auto. rewrite empty_mem. rewrite H. rewrite H0. simpl;auto. Qed. Lemma for_all_mem_4: forall s, for_all f s=false -> {x:elt | mem x s=true /\ f x=false}. Proof. intros. rewrite for_all_filter in H; auto. destruct (choose_mem_3 _ H) as (x,(H0,H1));intros. exists x. rewrite filter_b in H1; auto. elim (andb_prop _ _ H1). split;auto. replace false with (negb true);auto;apply negb_sym;auto. Qed. (** Properties of [exists] *) Lemma for_all_exists: forall s, exists_ f s = negb (for_all (fun x =>negb (f x)) s). Proof. intros. rewrite for_all_b; auto. rewrite exists_b; auto. induction (elements s); simpl; auto. destruct (f a); simpl; auto. Qed. End Bool. Section Bool'. Variable f:elt->bool. Variable Comp: compat_bool E.eq f. Let Comp' : compat_bool E.eq (fun x =>negb (f x)). Proof. unfold compat_bool in *; intros; f_equal; auto. Qed. Lemma exists_mem_1: forall s, (forall x, mem x s=true->f x=false) -> exists_ f s=false. Proof. intros. rewrite for_all_exists; auto. rewrite for_all_mem_1;auto with bool. intros;generalize (H x H0);intros. symmetry;apply negb_sym;simpl;auto. Qed. Lemma exists_mem_2: forall s, exists_ f s=false -> forall x, mem x s=true -> f x=false. Proof. intros. rewrite for_all_exists in H; auto. replace false with (negb true);auto;apply negb_sym;symmetry. rewrite (for_all_mem_2 (fun x => negb (f x)) Comp' s);simpl;auto. replace true with (negb false);auto;apply negb_sym;auto. Qed. Lemma exists_mem_3: forall s x, mem x s=true -> f x=true -> exists_ f s=true. Proof. intros. rewrite for_all_exists; auto. symmetry;apply negb_sym;simpl. apply for_all_mem_3 with x;auto. rewrite H0;auto. Qed. Lemma exists_mem_4: forall s, exists_ f s=true -> {x:elt | (mem x s)=true /\ (f x)=true}. Proof. intros. rewrite for_all_exists in H; auto. elim (for_all_mem_4 (fun x =>negb (f x)) Comp' s);intros. elim p;intros. exists x;split;auto. replace true with (negb false);auto;apply negb_sym;auto. replace false with (negb true);auto;apply negb_sym;auto. Qed. End Bool'. Section Sum. (** Adding a valuation function on all elements of a set. *) Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0. Notation compat_opL := (compat_op E.eq (@Logic.eq _)). Notation transposeL := (transpose (@Logic.eq _)). Lemma sum_plus : forall f g, compat_nat E.eq f -> compat_nat E.eq g -> forall s, sum (fun x =>f x+g x) s = sum f s + sum g s. Proof. unfold sum. intros f g Hf Hg. assert (fc : compat_opL (fun x:elt =>plus (f x))). auto. assert (ft : transposeL (fun x:elt =>plus (f x))). red; intros; omega. assert (gc : compat_opL (fun x:elt => plus (g x))). auto. assert (gt : transposeL (fun x:elt =>plus (g x))). red; intros; omega. assert (fgc : compat_opL (fun x:elt =>plus ((f x)+(g x)))). auto. assert (fgt : transposeL (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega. assert (st := gen_st nat). intros s;pattern s; apply set_rec. intros. rewrite <- (fold_equal _ _ st _ fc ft 0 _ _ H). rewrite <- (fold_equal _ _ st _ gc gt 0 _ _ H). rewrite <- (fold_equal _ _ st _ fgc fgt 0 _ _ H); auto. intros; do 3 (rewrite (fold_add _ _ st);auto). rewrite H0;simpl;omega. do 3 rewrite fold_empty;auto. Qed. Lemma sum_filter : forall f, (compat_bool E.eq f) -> forall s, (sum (fun x => if f x then 1 else 0) s) = (cardinal (filter f s)). Proof. unfold sum; intros f Hf. assert (st := gen_st nat). assert (cc : compat_opL (fun x => plus (if f x then 1 else 0))). red; intros. rewrite (Hf x x' H); auto. assert (ct : transposeL (fun x => plus (if f x then 1 else 0))). red; intros; omega. intros s;pattern s; apply set_rec. intros. change elt with E.t. rewrite <- (fold_equal _ _ st _ cc ct 0 _ _ H). rewrite <- (MP.Equal_cardinal (filter_equal Hf (equal_2 H))); auto. intros; rewrite (fold_add _ _ st _ cc ct); auto. generalize (@add_filter_1 f Hf s0 (add x s0) x) (@add_filter_2 f Hf s0 (add x s0) x) . assert (~ In x (filter f s0)). intro H1; rewrite (mem_1 (filter_1 Hf H1)) in H; discriminate H. case (f x); simpl; intros. rewrite (MP.cardinal_2 H1 (H2 (refl_equal true) (MP.Add_add s0 x))); auto. rewrite <- (MP.Equal_cardinal (H3 (refl_equal false) (MP.Add_add s0 x))); auto. intros; rewrite fold_empty;auto. rewrite MP.cardinal_1; auto. unfold Empty; intros. rewrite filter_iff; auto; set_iff; tauto. Qed. Lemma fold_compat : forall (A:Set)(eqA:A->A->Prop)(st:(Setoid_Theory _ eqA)) (f g:elt->A->A), (compat_op E.eq eqA f) -> (transpose eqA f) -> (compat_op E.eq eqA g) -> (transpose eqA g) -> forall (i:A)(s:t),(forall x:elt, (In x s) -> forall y, (eqA (f x y) (g x y))) -> (eqA (fold f s i) (fold g s i)). Proof. intros A eqA st f g fc ft gc gt i. intro s; pattern s; apply set_rec; intros. trans_st (fold f s0 i). apply fold_equal with (eqA:=eqA); auto. rewrite equal_sym; auto. trans_st (fold g s0 i). apply H0; intros; apply H1; auto with set. elim (equal_2 H x); auto with set; intros. apply fold_equal with (eqA:=eqA); auto with set. trans_st (f x (fold f s0 i)). apply fold_add with (eqA:=eqA); auto with set. trans_st (g x (fold f s0 i)); auto with set. trans_st (g x (fold g s0 i)); auto with set. sym_st; apply fold_add with (eqA:=eqA); auto. do 2 rewrite fold_empty; refl_st. Qed. Lemma sum_compat : forall f g, compat_nat E.eq f -> compat_nat E.eq g -> forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s. intros. unfold sum; apply (fold_compat _ (@Logic.eq nat)); auto. red; intros; omega. red; intros; omega. Qed. End Sum. End WEqProperties. (** Now comes a special version dedicated to full sets. For this one, only one argument [(M:S)] is necessary. *) Module EqProperties (M:S). Module D := OT_as_DT M.E. Include WEqProperties D M. End EqProperties.