(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* E.eq x y \/ In y s. Definition add : forall (x : elt) (s : t), {s' : t | Add x s s'}. Proof. intros; exists (add x s); auto. unfold Add in |- *; intuition. elim (E.eq_dec x y); auto. intros; right. eapply add_3; eauto. Qed. Definition singleton : forall x : elt, {s : t | forall y : elt, In y s <-> E.eq x y}. Proof. intros; exists (singleton x); intuition. Qed. Definition remove : forall (x : elt) (s : t), {s' : t | forall y : elt, In y s' <-> ~ E.eq x y /\ In y s}. Proof. intros; exists (remove x s); intuition. absurd (In x (remove x s)); auto with set. apply In_1 with y; auto. elim (E.eq_dec x y); intros; auto. absurd (In x (remove x s)); auto with set. apply In_1 with y; auto. eauto with set. Qed. Definition union : forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s \/ In x s'}. Proof. intros; exists (union s s'); intuition. Qed. Definition inter : forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ In x s'}. Proof. intros; exists (inter s s'); intuition; eauto with set. Qed. Definition diff : forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ ~ In x s'}. Proof. intros; exists (diff s s'); intuition; eauto with set. absurd (In x s'); eauto with set. Qed. Definition equal : forall s s' : t, {Equal s s'} + {~ Equal s s'}. Proof. intros. generalize (equal_1 (s:=s) (s':=s')) (equal_2 (s:=s) (s':=s')). case (equal s s'); intuition. Qed. Definition subset : forall s s' : t, {Subset s s'} + {~Subset s s'}. Proof. intros. generalize (subset_1 (s:=s) (s':=s')) (subset_2 (s:=s) (s':=s')). case (subset s s'); intuition. Qed. Definition elements : forall s : t, {l : list elt | sort E.lt l /\ (forall x : elt, In x s <-> InA E.eq x l)}. Proof. intros; exists (elements s); intuition. Defined. Definition fold : forall (A : Type) (f : elt -> A -> A) (s : t) (i : A), {r : A | let (l,_) := elements s in r = fold_left (fun a e => f e a) l i}. Proof. intros; exists (fold (A:=A) f s i); exact (fold_1 s i f). Qed. Definition cardinal : forall s : t, {r : nat | let (l,_) := elements s in r = length l }. Proof. intros; exists (cardinal s); exact (cardinal_1 s). Qed. Definition fdec (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (x : elt) := if Pdec x then true else false. Lemma compat_P_aux : forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}), compat_P E.eq P -> compat_bool E.eq (fdec Pdec). Proof. unfold compat_P, compat_bool, Proper, respectful, fdec in |- *; intros. generalize (E.eq_sym H0); case (Pdec x); case (Pdec y); firstorder. Qed. Hint Resolve compat_P_aux. Definition filter : forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), {s' : t | compat_P E.eq P -> forall x : elt, In x s' <-> In x s /\ P x}. Proof. intros. exists (filter (fdec Pdec) s). intro H; assert (compat_bool E.eq (fdec Pdec)); auto. intuition. eauto with set. generalize (filter_2 H0 H1). unfold fdec in |- *. case (Pdec x); intuition. inversion H2. apply filter_3; auto. unfold fdec in |- *; simpl in |- *. case (Pdec x); intuition. Qed. Definition for_all : forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), {compat_P E.eq P -> For_all P s} + {compat_P E.eq P -> ~ For_all P s}. Proof. intros. generalize (for_all_1 (s:=s) (f:=fdec Pdec)) (for_all_2 (s:=s) (f:=fdec Pdec)). case (for_all (fdec Pdec) s); unfold For_all in |- *; [ left | right ]; intros. assert (compat_bool E.eq (fdec Pdec)); auto. generalize (H0 H3 (refl_equal _) _ H2). unfold fdec in |- *. case (Pdec x); intuition. inversion H4. intuition. absurd (false = true); [ auto with bool | apply H; auto ]. intro. unfold fdec in |- *. case (Pdec x); intuition. Qed. Definition exists_ : forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), {compat_P E.eq P -> Exists P s} + {compat_P E.eq P -> ~ Exists P s}. Proof. intros. generalize (exists_1 (s:=s) (f:=fdec Pdec)) (exists_2 (s:=s) (f:=fdec Pdec)). case (exists_ (fdec Pdec) s); unfold Exists in |- *; [ left | right ]; intros. elim H0; auto; intros. exists x; intuition. generalize H4. unfold fdec in |- *. case (Pdec x); intuition. inversion H2. intuition. elim H2; intros. absurd (false = true); [ auto with bool | apply H; auto ]. exists x; intuition. unfold fdec in |- *. case (Pdec x); intuition. Qed. Definition partition : forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t), {partition : t * t | let (s1, s2) := partition in compat_P E.eq P -> For_all P s1 /\ For_all (fun x => ~ P x) s2 /\ (forall x : elt, In x s <-> In x s1 \/ In x s2)}. Proof. intros. exists (partition (fdec Pdec) s). generalize (partition_1 s (f:=fdec Pdec)) (partition_2 s (f:=fdec Pdec)). case (partition (fdec Pdec) s). intros s1 s2; simpl in |- *. intros; assert (compat_bool E.eq (fdec Pdec)); auto. intros; assert (compat_bool E.eq (fun x => negb (fdec Pdec x))). generalize H2; unfold compat_bool, Proper, respectful in |- *; intuition; apply (f_equal negb); auto. intuition. generalize H4; unfold For_all, Equal in |- *; intuition. elim (H0 x); intros. assert (fdec Pdec x = true). eapply filter_2; eauto with set. generalize H8; unfold fdec in |- *; case (Pdec x); intuition. inversion H9. generalize H; unfold For_all, Equal in |- *; intuition. elim (H0 x); intros. cut ((fun x => negb (fdec Pdec x)) x = true). unfold fdec in |- *; case (Pdec x); intuition. change ((fun x => negb (fdec Pdec x)) x = true) in |- *. apply (filter_2 (s:=s) (x:=x)); auto. set (b := fdec Pdec x) in *; generalize (refl_equal b); pattern b at -1 in |- *; case b; unfold b in |- *; [ left | right ]. elim (H4 x); intros _ B; apply B; auto with set. elim (H x); intros _ B; apply B; auto with set. apply filter_3; auto. rewrite H5; auto. eapply (filter_1 (s:=s) (x:=x) H2); elim (H4 x); intros B _; apply B; auto. eapply (filter_1 (s:=s) (x:=x) H3); elim (H x); intros B _; apply B; auto. Qed. Definition choose_aux: forall s : t, { x : elt | M.choose s = Some x } + { M.choose s = None }. Proof. intros. destruct (M.choose s); [left | right]; auto. exists e; auto. Qed. Definition choose : forall s : t, {x : elt | In x s} + {Empty s}. Proof. intros; destruct (choose_aux s) as [(x,Hx)|H]. left; exists x; apply choose_1; auto. right; apply choose_2; auto. Defined. Lemma choose_ok1 : forall s x, M.choose s = Some x <-> exists H:In x s, choose s = inleft _ (exist (fun x => In x s) x H). Proof. intros s x. unfold choose; split; intros. destruct (choose_aux s) as [(y,Hy)|H']; try congruence. replace x with y in * by congruence. exists (choose_1 Hy); auto. destruct H. destruct (choose_aux s) as [(y,Hy)|H']; congruence. Qed. Lemma choose_ok2 : forall s, M.choose s = None <-> exists H:Empty s, choose s = inright _ H. Proof. intros s. unfold choose; split; intros. destruct (choose_aux s) as [(y,Hy)|H']; try congruence. exists (choose_2 H'); auto. destruct H. destruct (choose_aux s) as [(y,Hy)|H']; congruence. Qed. Lemma choose_equal : forall s s', Equal s s' -> match choose s, choose s' with | inleft (exist x _), inleft (exist x' _) => E.eq x x' | inright _, inright _ => True | _, _ => False end. Proof. intros. generalize (@M.choose_1 s)(@M.choose_2 s) (@M.choose_1 s')(@M.choose_2 s')(@M.choose_3 s s') (choose_ok1 s)(choose_ok2 s)(choose_ok1 s')(choose_ok2 s'). destruct (choose s) as [(x,Hx)|Hx]; destruct (choose s') as [(x',Hx')|Hx']; auto; intros. apply H4; auto. rewrite H5; exists Hx; auto. rewrite H7; exists Hx'; auto. apply Hx' with x; unfold Equal in H; rewrite <-H; auto. apply Hx with x'; unfold Equal in H; rewrite H; auto. Qed. Definition min_elt : forall s : t, {x : elt | In x s /\ For_all (fun y => ~ E.lt y x) s} + {Empty s}. Proof. intros; generalize (min_elt_1 (s:=s)) (min_elt_2 (s:=s)) (min_elt_3 (s:=s)). case (min_elt s); [ left | right ]; auto. exists e; unfold For_all in |- *; eauto. Qed. Definition max_elt : forall s : t, {x : elt | In x s /\ For_all (fun y => ~ E.lt x y) s} + {Empty s}. Proof. intros; generalize (max_elt_1 (s:=s)) (max_elt_2 (s:=s)) (max_elt_3 (s:=s)). case (max_elt s); [ left | right ]; auto. exists e; unfold For_all in |- *; eauto. Qed. Module E := E. Definition elt := elt. Definition t := t. Definition In := In. Definition Equal s s' := forall a : elt, In a s <-> In a s'. Definition Subset s s' := forall a : elt, In a s -> In a s'. Definition Empty s := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) (s : t) := forall x : elt, In x s -> P x. Definition Exists (P : elt -> Prop) (s : t) := exists x : elt, In x s /\ P x. Definition eq_In := In_1. Definition eq := Equal. Definition lt := lt. Definition eq_refl := eq_refl. Definition eq_sym := eq_sym. Definition eq_trans := eq_trans. Definition lt_trans := lt_trans. Definition lt_not_eq := lt_not_eq. Definition compare := compare. End DepOfNodep. (** * From dependent signature [Sdep] to non-dependent signature [S]. *) Module NodepOfDep (M: Sdep) <: S with Module E := M.E. Import M. Module ME := OrderedTypeFacts E. Definition empty : t := let (s, _) := empty in s. Lemma empty_1 : Empty empty. Proof. unfold empty in |- *; case M.empty; auto. Qed. Definition is_empty (s : t) : bool := if is_empty s then true else false. Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true. Proof. intros; unfold is_empty in |- *; case (M.is_empty s); auto. Qed. Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s. Proof. intro s; unfold is_empty in |- *; case (M.is_empty s); auto. intros; discriminate H. Qed. Definition mem (x : elt) (s : t) : bool := if mem x s then true else false. Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true. Proof. intros; unfold mem in |- *; case (M.mem x s); auto. Qed. Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s. Proof. intros s x; unfold mem in |- *; case (M.mem x s); auto. intros; discriminate H. Qed. Definition eq_dec := equal. Definition equal (s s' : t) : bool := if equal s s' then true else false. Lemma equal_1 : forall s s' : t, Equal s s' -> equal s s' = true. Proof. intros; unfold equal in |- *; case M.equal; intuition. Qed. Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'. Proof. intros s s'; unfold equal in |- *; case (M.equal s s'); intuition; inversion H. Qed. Definition subset (s s' : t) : bool := if subset s s' then true else false. Lemma subset_1 : forall s s' : t, Subset s s' -> subset s s' = true. Proof. intros; unfold subset in |- *; case M.subset; intuition. Qed. Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'. Proof. intros s s'; unfold subset in |- *; case (M.subset s s'); intuition; inversion H. Qed. Definition choose (s : t) : option elt := match choose s with | inleft (exist x _) => Some x | inright _ => None end. Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s. Proof. intros s x; unfold choose in |- *; case (M.choose s). simple destruct s0; intros; injection H; intros; subst; auto. intros; discriminate H. Qed. Lemma choose_2 : forall s : t, choose s = None -> Empty s. Proof. intro s; unfold choose in |- *; case (M.choose s); auto. simple destruct s0; intros; discriminate H. Qed. Lemma choose_3 : forall s s' x x', choose s = Some x -> choose s' = Some x' -> Equal s s' -> E.eq x x'. Proof. unfold choose; intros. generalize (M.choose_equal H1); clear H1. destruct (M.choose s) as [(?,?)|?]; destruct (M.choose s') as [(?,?)|?]; simpl; auto; congruence. Qed. Definition elements (s : t) : list elt := let (l, _) := elements s in l. Lemma elements_1 : forall (s : t) (x : elt), In x s -> InA E.eq x (elements s). Proof. intros; unfold elements in |- *; case (M.elements s); firstorder. Qed. Lemma elements_2 : forall (s : t) (x : elt), InA E.eq x (elements s) -> In x s. Proof. intros s x; unfold elements in |- *; case (M.elements s); firstorder. Qed. Lemma elements_3 : forall s : t, sort E.lt (elements s). Proof. intros; unfold elements in |- *; case (M.elements s); firstorder. Qed. Hint Resolve elements_3. Lemma elements_3w : forall s : t, NoDupA E.eq (elements s). Proof. auto. Qed. Definition min_elt (s : t) : option elt := match min_elt s with | inleft (exist x _) => Some x | inright _ => None end. Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s. Proof. intros s x; unfold min_elt in |- *; case (M.min_elt s). simple destruct s0; intros; injection H; intros; subst; intuition. intros; discriminate H. Qed. Lemma min_elt_2 : forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x. Proof. intros s x y; unfold min_elt in |- *; case (M.min_elt s). unfold For_all in |- *; simple destruct s0; intros; injection H; intros; subst; firstorder. intros; discriminate H. Qed. Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s. Proof. intros s; unfold min_elt in |- *; case (M.min_elt s); auto. simple destruct s0; intros; discriminate H. Qed. Definition max_elt (s : t) : option elt := match max_elt s with | inleft (exist x _) => Some x | inright _ => None end. Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s. Proof. intros s x; unfold max_elt in |- *; case (M.max_elt s). simple destruct s0; intros; injection H; intros; subst; intuition. intros; discriminate H. Qed. Lemma max_elt_2 : forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y. Proof. intros s x y; unfold max_elt in |- *; case (M.max_elt s). unfold For_all in |- *; simple destruct s0; intros; injection H; intros; subst; firstorder. intros; discriminate H. Qed. Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s. Proof. intros s; unfold max_elt in |- *; case (M.max_elt s); auto. simple destruct s0; intros; discriminate H. Qed. Definition add (x : elt) (s : t) : t := let (s', _) := add x s in s'. Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s). Proof. intros; unfold add in |- *; case (M.add x s); unfold Add in |- *; firstorder. Qed. Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s). Proof. intros; unfold add in |- *; case (M.add x s); unfold Add in |- *; firstorder. Qed. Lemma add_3 : forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s. Proof. intros s x y; unfold add in |- *; case (M.add x s); unfold Add in |- *; firstorder. Qed. Definition remove (x : elt) (s : t) : t := let (s', _) := remove x s in s'. Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s). Proof. intros; unfold remove in |- *; case (M.remove x s); firstorder. Qed. Lemma remove_2 : forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s). Proof. intros; unfold remove in |- *; case (M.remove x s); firstorder. Qed. Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s. Proof. intros s x y; unfold remove in |- *; case (M.remove x s); firstorder. Qed. Definition singleton (x : elt) : t := let (s, _) := singleton x in s. Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y. Proof. intros x y; unfold singleton in |- *; case (M.singleton x); firstorder. Qed. Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x). Proof. intros x y; unfold singleton in |- *; case (M.singleton x); firstorder. Qed. Definition union (s s' : t) : t := let (s'', _) := union s s' in s''. Lemma union_1 : forall (s s' : t) (x : elt), In x (union s s') -> In x s \/ In x s'. Proof. intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. Qed. Lemma union_2 : forall (s s' : t) (x : elt), In x s -> In x (union s s'). Proof. intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. Qed. Lemma union_3 : forall (s s' : t) (x : elt), In x s' -> In x (union s s'). Proof. intros s s' x; unfold union in |- *; case (M.union s s'); firstorder. Qed. Definition inter (s s' : t) : t := let (s'', _) := inter s s' in s''. Lemma inter_1 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s. Proof. intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. Qed. Lemma inter_2 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s'. Proof. intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. Qed. Lemma inter_3 : forall (s s' : t) (x : elt), In x s -> In x s' -> In x (inter s s'). Proof. intros s s' x; unfold inter in |- *; case (M.inter s s'); firstorder. Qed. Definition diff (s s' : t) : t := let (s'', _) := diff s s' in s''. Lemma diff_1 : forall (s s' : t) (x : elt), In x (diff s s') -> In x s. Proof. intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. Qed. Lemma diff_2 : forall (s s' : t) (x : elt), In x (diff s s') -> ~ In x s'. Proof. intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. Qed. Lemma diff_3 : forall (s s' : t) (x : elt), In x s -> ~ In x s' -> In x (diff s s'). Proof. intros s s' x; unfold diff in |- *; case (M.diff s s'); firstorder. Qed. Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f. Lemma cardinal_1 : forall s, cardinal s = length (elements s). Proof. intros; unfold cardinal in |- *; case (M.cardinal s); unfold elements in *; destruct (M.elements s); auto. Qed. Definition fold (B : Type) (f : elt -> B -> B) (i : t) (s : B) : B := let (fold, _) := fold f i s in fold. Lemma fold_1 : forall (s : t) (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (fun a e => f e a) (elements s) i. Proof. intros; unfold fold in |- *; case (M.fold f s i); unfold elements in *; destruct (M.elements s); auto. Qed. Definition f_dec : forall (f : elt -> bool) (x : elt), {f x = true} + {f x <> true}. Proof. intros; case (f x); auto with bool. Defined. Lemma compat_P_aux : forall f : elt -> bool, compat_bool E.eq f -> compat_P E.eq (fun x => f x = true). Proof. unfold compat_bool, compat_P, Proper, respectful, impl; intros; rewrite <- H1; firstorder. Qed. Hint Resolve compat_P_aux. Definition filter (f : elt -> bool) (s : t) : t := let (s', _) := filter (P:=fun x => f x = true) (f_dec f) s in s'. Lemma filter_1 : forall (s : t) (x : elt) (f : elt -> bool), compat_bool E.eq f -> In x (filter f s) -> In x s. Proof. intros s x f; unfold filter in |- *; case M.filter; intuition. generalize (i (compat_P_aux H)); firstorder. Qed. Lemma filter_2 : forall (s : t) (x : elt) (f : elt -> bool), compat_bool E.eq f -> In x (filter f s) -> f x = true. Proof. intros s x f; unfold filter in |- *; case M.filter; intuition. generalize (i (compat_P_aux H)); firstorder. Qed. Lemma filter_3 : forall (s : t) (x : elt) (f : elt -> bool), compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s). Proof. intros s x f; unfold filter in |- *; case M.filter; intuition. generalize (i (compat_P_aux H)); firstorder. Qed. Definition for_all (f : elt -> bool) (s : t) : bool := if for_all (P:=fun x => f x = true) (f_dec f) s then true else false. Lemma for_all_1 : forall (s : t) (f : elt -> bool), compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true. Proof. intros s f; unfold for_all in |- *; case M.for_all; intuition; elim n; auto. Qed. Lemma for_all_2 : forall (s : t) (f : elt -> bool), compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s. Proof. intros s f; unfold for_all in |- *; case M.for_all; intuition; inversion H0. Qed. Definition exists_ (f : elt -> bool) (s : t) : bool := if exists_ (P:=fun x => f x = true) (f_dec f) s then true else false. Lemma exists_1 : forall (s : t) (f : elt -> bool), compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true. Proof. intros s f; unfold exists_ in |- *; case M.exists_; intuition; elim n; auto. Qed. Lemma exists_2 : forall (s : t) (f : elt -> bool), compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s. Proof. intros s f; unfold exists_ in |- *; case M.exists_; intuition; inversion H0. Qed. Definition partition (f : elt -> bool) (s : t) : t * t := let (p, _) := partition (P:=fun x => f x = true) (f_dec f) s in p. Lemma partition_1 : forall (s : t) (f : elt -> bool), compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s). Proof. intros s f; unfold partition in |- *; case M.partition. intro p; case p; clear p; intros s1 s2 H C. generalize (H (compat_P_aux C)); clear H; intro H. simpl in |- *; unfold Equal in |- *; intuition. apply filter_3; firstorder. elim (H2 a); intros. assert (In a s). eapply filter_1; eauto. elim H3; intros; auto. absurd (f a = true). exact (H a H6). eapply filter_2; eauto. Qed. Lemma partition_2 : forall (s : t) (f : elt -> bool), compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). Proof. intros s f; unfold partition in |- *; case M.partition. intro p; case p; clear p; intros s1 s2 H C. generalize (H (compat_P_aux C)); clear H; intro H. assert (D : compat_bool E.eq (fun x => negb (f x))). generalize C; unfold compat_bool, Proper, respectful; intros; apply (f_equal negb); auto. simpl in |- *; unfold Equal in |- *; intuition. apply filter_3; firstorder. elim (H2 a); intros. assert (In a s). eapply filter_1; eauto. elim H3; intros; auto. absurd (f a = true). intro. generalize (filter_2 D H1). rewrite H7; intros H8; inversion H8. exact (H0 a H6). Qed. Module E := E. Definition elt := elt. Definition t := t. Definition In := In. Definition Equal s s' := forall a : elt, In a s <-> In a s'. Definition Subset s s' := forall a : elt, In a s -> In a s'. Definition Add (x : elt) (s s' : t) := forall y : elt, In y s' <-> E.eq y x \/ In y s. Definition Empty s := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) (s : t) := forall x : elt, In x s -> P x. Definition Exists (P : elt -> Prop) (s : t) := exists x : elt, In x s /\ P x. Definition In_1 := eq_In. Definition eq := Equal. Definition lt := lt. Definition eq_refl := eq_refl. Definition eq_sym := eq_sym. Definition eq_trans := eq_trans. Definition lt_trans := lt_trans. Definition lt_not_eq := lt_not_eq. Definition compare := compare. End NodepOfDep.