(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* True | xH, _ => False | xO p, xO q => bits_lt p q | xO _, _ => True | xI p, xI q => bits_lt p q | xI _, _ => False end. Definition lt:=bits_lt. Lemma bits_lt_trans : forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z. Proof. induction x. induction y; destruct z; simpl; eauto; intuition. induction y; destruct z; simpl; eauto; intuition. induction y; destruct z; simpl; eauto; intuition. Qed. Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Proof. exact bits_lt_trans. Qed. Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x. Proof. induction x; simpl; auto. Qed. Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Proof. intros; intro. rewrite <- H0 in H; clear H0 y. unfold lt in H. exact (bits_lt_antirefl x H). Qed. Definition compare : forall x y : t, Compare lt eq x y. Proof. induction x; destruct y. (* I I *) destruct (IHx y). apply LT; auto. apply EQ; rewrite e; red; auto. apply GT; auto. (* I O *) apply GT; simpl; auto. (* I H *) apply GT; simpl; auto. (* O I *) apply LT; simpl; auto. (* O O *) destruct (IHx y). apply LT; auto. apply EQ; rewrite e; red; auto. apply GT; auto. (* O H *) apply LT; simpl; auto. (* H I *) apply LT; simpl; auto. (* H O *) apply GT; simpl; auto. (* H H *) apply EQ; red; auto. Qed. Lemma eq_dec (x y: positive): {x = y} + {x <> y}. Proof. intros. case_eq ((x ?= y) Eq); intros. left. apply Pcompare_Eq_eq; auto. right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate. right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate. Qed. End PositiveOrderedTypeBits. (** Other positive stuff *) Fixpoint append (i j : positive) {struct i} : positive := match i with | xH => j | xI ii => xI (append ii j) | xO ii => xO (append ii j) end. Lemma append_assoc_0 : forall (i j : positive), append i (xO j) = append (append i (xO xH)) j. Proof. induction i; intros; destruct j; simpl; try rewrite (IHi (xI j)); try rewrite (IHi (xO j)); try rewrite <- (IHi xH); auto. Qed. Lemma append_assoc_1 : forall (i j : positive), append i (xI j) = append (append i (xI xH)) j. Proof. induction i; intros; destruct j; simpl; try rewrite (IHi (xI j)); try rewrite (IHi (xO j)); try rewrite <- (IHi xH); auto. Qed. Lemma append_neutral_r : forall (i : positive), append i xH = i. Proof. induction i; simpl; congruence. Qed. Lemma append_neutral_l : forall (i : positive), append xH i = i. Proof. simpl; auto. Qed. (** The module of maps over positive keys *) Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits. Module E:=PositiveOrderedTypeBits. Module ME:=KeyOrderedType E. Definition key := positive. Inductive tree (A : Type) := | Leaf : tree A | Node : tree A -> option A -> tree A -> tree A. Definition t := tree. Section A. Variable A:Type. Implicit Arguments Leaf [A]. Definition empty : t A := Leaf. Fixpoint is_empty (m : t A) {struct m} : bool := match m with | Leaf => true | Node l None r => (is_empty l) && (is_empty r) | _ => false end. Fixpoint find (i : positive) (m : t A) {struct i} : option A := match m with | Leaf => None | Node l o r => match i with | xH => o | xO ii => find ii l | xI ii => find ii r end end. Fixpoint mem (i : positive) (m : t A) {struct i} : bool := match m with | Leaf => false | Node l o r => match i with | xH => match o with None => false | _ => true end | xO ii => mem ii l | xI ii => mem ii r end end. Fixpoint add (i : positive) (v : A) (m : t A) {struct i} : t A := match m with | Leaf => match i with | xH => Node Leaf (Some v) Leaf | xO ii => Node (add ii v Leaf) None Leaf | xI ii => Node Leaf None (add ii v Leaf) end | Node l o r => match i with | xH => Node l (Some v) r | xO ii => Node (add ii v l) o r | xI ii => Node l o (add ii v r) end end. Fixpoint remove (i : positive) (m : t A) {struct i} : t A := match i with | xH => match m with | Leaf => Leaf | Node Leaf o Leaf => Leaf | Node l o r => Node l None r end | xO ii => match m with | Leaf => Leaf | Node l None Leaf => match remove ii l with | Leaf => Leaf | mm => Node mm None Leaf end | Node l o r => Node (remove ii l) o r end | xI ii => match m with | Leaf => Leaf | Node Leaf None r => match remove ii r with | Leaf => Leaf | mm => Node Leaf None mm end | Node l o r => Node l o (remove ii r) end end. (** [elements] *) Fixpoint xelements (m : t A) (i : positive) {struct m} : list (positive * A) := match m with | Leaf => nil | Node l None r => (xelements l (append i (xO xH))) ++ (xelements r (append i (xI xH))) | Node l (Some x) r => (xelements l (append i (xO xH))) ++ ((i, x) :: xelements r (append i (xI xH))) end. (* Note: function [xelements] above is inefficient. We should apply deforestation to it, but that makes the proofs even harder. *) Definition elements (m : t A) := xelements m xH. (** [cardinal] *) Fixpoint cardinal (m : t A) : nat := match m with | Leaf => 0%nat | Node l None r => (cardinal l + cardinal r)%nat | Node l (Some _) r => S (cardinal l + cardinal r) end. Section CompcertSpec. Theorem gempty: forall (i: positive), find i empty = None. Proof. destruct i; simpl; auto. Qed. Theorem gss: forall (i: positive) (x: A) (m: t A), find i (add i x m) = Some x. Proof. induction i; destruct m; simpl; auto. Qed. Lemma gleaf : forall (i : positive), find i (Leaf : t A) = None. Proof. exact gempty. Qed. Theorem gso: forall (i j: positive) (x: A) (m: t A), i <> j -> find i (add j x m) = find i m. Proof. induction i; intros; destruct j; destruct m; simpl; try rewrite <- (gleaf i); auto; try apply IHi; congruence. Qed. Lemma rleaf : forall (i : positive), remove i (Leaf : t A) = Leaf. Proof. destruct i; simpl; auto. Qed. Theorem grs: forall (i: positive) (m: t A), find i (remove i m) = None. Proof. induction i; destruct m. simpl; auto. destruct m1; destruct o; destruct m2 as [ | ll oo rr]; simpl; auto. rewrite (rleaf i); auto. cut (find i (remove i (Node ll oo rr)) = None). destruct (remove i (Node ll oo rr)); auto; apply IHi. apply IHi. simpl; auto. destruct m1 as [ | ll oo rr]; destruct o; destruct m2; simpl; auto. rewrite (rleaf i); auto. cut (find i (remove i (Node ll oo rr)) = None). destruct (remove i (Node ll oo rr)); auto; apply IHi. apply IHi. simpl; auto. destruct m1; destruct m2; simpl; auto. Qed. Theorem gro: forall (i j: positive) (m: t A), i <> j -> find i (remove j m) = find i m. Proof. induction i; intros; destruct j; destruct m; try rewrite (rleaf (xI j)); try rewrite (rleaf (xO j)); try rewrite (rleaf 1); auto; destruct m1; destruct o; destruct m2; simpl; try apply IHi; try congruence; try rewrite (rleaf j); auto; try rewrite (gleaf i); auto. cut (find i (remove j (Node m2_1 o m2_2)) = find i (Node m2_1 o m2_2)); [ destruct (remove j (Node m2_1 o m2_2)); try rewrite (gleaf i); auto | apply IHi; congruence ]. destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf i); auto. destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf i); auto. cut (find i (remove j (Node m1_1 o0 m1_2)) = find i (Node m1_1 o0 m1_2)); [ destruct (remove j (Node m1_1 o0 m1_2)); try rewrite (gleaf i); auto | apply IHi; congruence ]. destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf i); auto. destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf i); auto. Qed. Lemma xelements_correct: forall (m: t A) (i j : positive) (v: A), find i m = Some v -> List.In (append j i, v) (xelements m j). Proof. induction m; intros. rewrite (gleaf i) in H; congruence. destruct o; destruct i; simpl; simpl in H. rewrite append_assoc_1; apply in_or_app; right; apply in_cons; apply IHm2; auto. rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto. rewrite append_neutral_r; apply in_or_app; injection H; intro EQ; rewrite EQ; right; apply in_eq. rewrite append_assoc_1; apply in_or_app; right; apply IHm2; auto. rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto. congruence. Qed. Theorem elements_correct: forall (m: t A) (i: positive) (v: A), find i m = Some v -> List.In (i, v) (elements m). Proof. intros m i v H. exact (xelements_correct m i xH H). Qed. Fixpoint xfind (i j : positive) (m : t A) {struct j} : option A := match i, j with | _, xH => find i m | xO ii, xO jj => xfind ii jj m | xI ii, xI jj => xfind ii jj m | _, _ => None end. Lemma xfind_left : forall (j i : positive) (m1 m2 : t A) (o : option A) (v : A), xfind i (append j (xO xH)) m1 = Some v -> xfind i j (Node m1 o m2) = Some v. Proof. induction j; intros; destruct i; simpl; simpl in H; auto; try congruence. destruct i; congruence. Qed. Lemma xelements_ii : forall (m: t A) (i j : positive) (v: A), List.In (xI i, v) (xelements m (xI j)) -> List.In (i, v) (xelements m j). Proof. induction m. simpl; auto. intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H); apply in_or_app. left; apply IHm1; auto. right; destruct (in_inv H0). injection H1; intros Eq1 Eq2; rewrite Eq1; rewrite Eq2; apply in_eq. apply in_cons; apply IHm2; auto. left; apply IHm1; auto. right; apply IHm2; auto. Qed. Lemma xelements_io : forall (m: t A) (i j : positive) (v: A), ~List.In (xI i, v) (xelements m (xO j)). Proof. induction m. simpl; auto. intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H). apply (IHm1 _ _ _ H0). destruct (in_inv H0). congruence. apply (IHm2 _ _ _ H1). apply (IHm1 _ _ _ H0). apply (IHm2 _ _ _ H0). Qed. Lemma xelements_oo : forall (m: t A) (i j : positive) (v: A), List.In (xO i, v) (xelements m (xO j)) -> List.In (i, v) (xelements m j). Proof. induction m. simpl; auto. intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H); apply in_or_app. left; apply IHm1; auto. right; destruct (in_inv H0). injection H1; intros Eq1 Eq2; rewrite Eq1; rewrite Eq2; apply in_eq. apply in_cons; apply IHm2; auto. left; apply IHm1; auto. right; apply IHm2; auto. Qed. Lemma xelements_oi : forall (m: t A) (i j : positive) (v: A), ~List.In (xO i, v) (xelements m (xI j)). Proof. induction m. simpl; auto. intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H). apply (IHm1 _ _ _ H0). destruct (in_inv H0). congruence. apply (IHm2 _ _ _ H1). apply (IHm1 _ _ _ H0). apply (IHm2 _ _ _ H0). Qed. Lemma xelements_ih : forall (m1 m2: t A) (o: option A) (i : positive) (v: A), List.In (xI i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m2 xH). Proof. destruct o; simpl; intros; destruct (in_app_or _ _ _ H). absurd (List.In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto. destruct (in_inv H0). congruence. apply xelements_ii; auto. absurd (List.In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto. apply xelements_ii; auto. Qed. Lemma xelements_oh : forall (m1 m2: t A) (o: option A) (i : positive) (v: A), List.In (xO i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m1 xH). Proof. destruct o; simpl; intros; destruct (in_app_or _ _ _ H). apply xelements_oo; auto. destruct (in_inv H0). congruence. absurd (List.In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto. apply xelements_oo; auto. absurd (List.In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto. Qed. Lemma xelements_hi : forall (m: t A) (i : positive) (v: A), ~List.In (xH, v) (xelements m (xI i)). Proof. induction m; intros. simpl; auto. destruct o; simpl; intro H; destruct (in_app_or _ _ _ H). generalize H0; apply IHm1; auto. destruct (in_inv H0). congruence. generalize H1; apply IHm2; auto. generalize H0; apply IHm1; auto. generalize H0; apply IHm2; auto. Qed. Lemma xelements_ho : forall (m: t A) (i : positive) (v: A), ~List.In (xH, v) (xelements m (xO i)). Proof. induction m; intros. simpl; auto. destruct o; simpl; intro H; destruct (in_app_or _ _ _ H). generalize H0; apply IHm1; auto. destruct (in_inv H0). congruence. generalize H1; apply IHm2; auto. generalize H0; apply IHm1; auto. generalize H0; apply IHm2; auto. Qed. Lemma find_xfind_h : forall (m: t A) (i: positive), find i m = xfind i xH m. Proof. destruct i; simpl; auto. Qed. Lemma xelements_complete: forall (i j : positive) (m: t A) (v: A), List.In (i, v) (xelements m j) -> xfind i j m = Some v. Proof. induction i; simpl; intros; destruct j; simpl. apply IHi; apply xelements_ii; auto. absurd (List.In (xI i, v) (xelements m (xO j))); auto; apply xelements_io. destruct m. simpl in H; tauto. rewrite find_xfind_h. apply IHi. apply (xelements_ih _ _ _ _ _ H). absurd (List.In (xO i, v) (xelements m (xI j))); auto; apply xelements_oi. apply IHi; apply xelements_oo; auto. destruct m. simpl in H; tauto. rewrite find_xfind_h. apply IHi. apply (xelements_oh _ _ _ _ _ H). absurd (List.In (xH, v) (xelements m (xI j))); auto; apply xelements_hi. absurd (List.In (xH, v) (xelements m (xO j))); auto; apply xelements_ho. destruct m. simpl in H; tauto. destruct o; simpl in H; destruct (in_app_or _ _ _ H). absurd (List.In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho. destruct (in_inv H0). congruence. absurd (List.In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi. absurd (List.In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho. absurd (List.In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi. Qed. Theorem elements_complete: forall (m: t A) (i: positive) (v: A), List.In (i, v) (elements m) -> find i m = Some v. Proof. intros m i v H. unfold elements in H. rewrite find_xfind_h. exact (xelements_complete i xH m v H). Qed. Lemma cardinal_1 : forall (m: t A), cardinal m = length (elements m). Proof. unfold elements. intros m; set (p:=1); clearbody p; revert m p. induction m; simpl; auto; intros. rewrite (IHm1 (append p 2)), (IHm2 (append p 3)); auto. destruct o; rewrite app_length; simpl; omega. Qed. End CompcertSpec. Definition MapsTo (i:positive)(v:A)(m:t A) := find i m = Some v. Definition In (i:positive)(m:t A) := exists e:A, MapsTo i e m. Definition Empty m := forall (a : positive)(e:A) , ~ MapsTo a e m. Definition eq_key (p p':positive*A) := E.eq (fst p) (fst p'). Definition eq_key_elt (p p':positive*A) := E.eq (fst p) (fst p') /\ (snd p) = (snd p'). Definition lt_key (p p':positive*A) := E.lt (fst p) (fst p'). Lemma mem_find : forall m x, mem x m = match find x m with None => false | _ => true end. Proof. induction m; destruct x; simpl; auto. Qed. Lemma Empty_alt : forall m, Empty m <-> forall a, find a m = None. Proof. unfold Empty, MapsTo. intuition. generalize (H a). destruct (find a m); intuition. elim (H0 a0); auto. rewrite H in H0; discriminate. Qed. Lemma Empty_Node : forall l o r, Empty (Node l o r) <-> o=None /\ Empty l /\ Empty r. Proof. intros l o r. split. rewrite Empty_alt. split. destruct o; auto. generalize (H 1); simpl; auto. split; rewrite Empty_alt; intros. generalize (H (xO a)); auto. generalize (H (xI a)); auto. intros (H,(H0,H1)). subst. rewrite Empty_alt; intros. destruct a; auto. simpl; generalize H1; rewrite Empty_alt; auto. simpl; generalize H0; rewrite Empty_alt; auto. Qed. Section FMapSpec. Lemma mem_1 : forall m x, In x m -> mem x m = true. Proof. unfold In, MapsTo; intros m x; rewrite mem_find. destruct 1 as (e0,H0); rewrite H0; auto. Qed. Lemma mem_2 : forall m x, mem x m = true -> In x m. Proof. unfold In, MapsTo; intros m x; rewrite mem_find. destruct (find x m). exists a; auto. intros; discriminate. Qed. Variable m m' m'' : t A. Variable x y z : key. Variable e e' : A. Lemma MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m. Proof. intros; rewrite <- H; auto. Qed. Lemma find_1 : MapsTo x e m -> find x m = Some e. Proof. unfold MapsTo; auto. Qed. Lemma find_2 : find x m = Some e -> MapsTo x e m. Proof. red; auto. Qed. Lemma empty_1 : Empty empty. Proof. rewrite Empty_alt; apply gempty. Qed. Lemma is_empty_1 : Empty m -> is_empty m = true. Proof. induction m; simpl; auto. rewrite Empty_Node. intros (H,(H0,H1)). subst; simpl. rewrite IHt0_1; simpl; auto. Qed. Lemma is_empty_2 : is_empty m = true -> Empty m. Proof. induction m; simpl; auto. rewrite Empty_alt. intros _; exact gempty. rewrite Empty_Node. destruct o. intros; discriminate. intro H; destruct (andb_prop _ _ H); intuition. Qed. Lemma add_1 : E.eq x y -> MapsTo y e (add x e m). Proof. unfold MapsTo. intro H; rewrite H; clear H. apply gss. Qed. Lemma add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m). Proof. unfold MapsTo. intros; rewrite gso; auto. Qed. Lemma add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m. Proof. unfold MapsTo. intro H; rewrite gso; auto. Qed. Lemma remove_1 : E.eq x y -> ~ In y (remove x m). Proof. intros; intro. generalize (mem_1 H0). rewrite mem_find. red in H. rewrite H. rewrite grs. intros; discriminate. Qed. Lemma remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m). Proof. unfold MapsTo. intro H; rewrite gro; auto. Qed. Lemma remove_3 : MapsTo y e (remove x m) -> MapsTo y e m. Proof. unfold MapsTo. destruct (E.eq_dec x y). subst. rewrite grs; intros; discriminate. rewrite gro; auto. Qed. Lemma elements_1 : MapsTo x e m -> InA eq_key_elt (x,e) (elements m). Proof. unfold MapsTo. rewrite InA_alt. intro H. exists (x,e). split. red; simpl; unfold E.eq; auto. apply elements_correct; auto. Qed. Lemma elements_2 : InA eq_key_elt (x,e) (elements m) -> MapsTo x e m. Proof. unfold MapsTo. rewrite InA_alt. intros ((e0,a),(H,H0)). red in H; simpl in H; unfold E.eq in H; destruct H; subst. apply elements_complete; auto. Qed. Lemma xelements_bits_lt_1 : forall p p0 q m v, List.In (p0,v) (xelements m (append p (xO q))) -> E.bits_lt p0 p. Proof. intros. generalize (xelements_complete _ _ _ _ H); clear H; intros. revert p0 q m v H. induction p; destruct p0; simpl; intros; eauto; try discriminate. Qed. Lemma xelements_bits_lt_2 : forall p p0 q m v, List.In (p0,v) (xelements m (append p (xI q))) -> E.bits_lt p p0. Proof. intros. generalize (xelements_complete _ _ _ _ H); clear H; intros. revert p0 q m v H. induction p; destruct p0; simpl; intros; eauto; try discriminate. Qed. Lemma xelements_sort : forall p, sort lt_key (xelements m p). Proof. induction m. simpl; auto. destruct o; simpl; intros. (* Some *) apply (SortA_app (eqA:=eq_key_elt)); auto. compute; intuition. constructor; auto. apply In_InfA; intros. destruct y0. red; red; simpl. eapply xelements_bits_lt_2; eauto. intros x0 y0. do 2 rewrite InA_alt. intros (y1,(Hy1,H)) (y2,(Hy2,H0)). destruct y1; destruct x0; compute in Hy1; destruct Hy1; subst. destruct y2; destruct y0; compute in Hy2; destruct Hy2; subst. red; red; simpl. destruct H0. injection H0; clear H0; intros _ H0; subst. eapply xelements_bits_lt_1; eauto. apply E.bits_lt_trans with p. eapply xelements_bits_lt_1; eauto. eapply xelements_bits_lt_2; eauto. (* None *) apply (SortA_app (eqA:=eq_key_elt)); auto. compute; intuition. intros x0 y0. do 2 rewrite InA_alt. intros (y1,(Hy1,H)) (y2,(Hy2,H0)). destruct y1; destruct x0; compute in Hy1; destruct Hy1; subst. destruct y2; destruct y0; compute in Hy2; destruct Hy2; subst. red; red; simpl. apply E.bits_lt_trans with p. eapply xelements_bits_lt_1; eauto. eapply xelements_bits_lt_2; eauto. Qed. Lemma elements_3 : sort lt_key (elements m). Proof. unfold elements. apply xelements_sort; auto. Qed. Lemma elements_3w : NoDupA eq_key (elements m). Proof. change eq_key with (@ME.eqk A). apply ME.Sort_NoDupA; apply elements_3; auto. Qed. End FMapSpec. (** [map] and [mapi] *) Variable B : Type. Section Mapi. Variable f : positive -> A -> B. Fixpoint xmapi (m : t A) (i : positive) {struct m} : t B := match m with | Leaf => @Leaf B | Node l o r => Node (xmapi l (append i (xO xH))) (option_map (f i) o) (xmapi r (append i (xI xH))) end. Definition mapi m := xmapi m xH. End Mapi. Definition map (f : A -> B) m := mapi (fun _ => f) m. End A. Lemma xgmapi: forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A), find i (xmapi f m j) = option_map (f (append j i)) (find i m). Proof. induction i; intros; destruct m; simpl; auto. rewrite (append_assoc_1 j i); apply IHi. rewrite (append_assoc_0 j i); apply IHi. rewrite (append_neutral_r j); auto. Qed. Theorem gmapi: forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A), find i (mapi f m) = option_map (f i) (find i m). Proof. intros. unfold mapi. replace (f i) with (f (append xH i)). apply xgmapi. rewrite append_neutral_l; auto. Qed. Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). Proof. intros. exists x. split; [red; auto|]. apply find_2. generalize (find_1 H); clear H; intros. rewrite gmapi. rewrite H. simpl; auto. Qed. Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:key->elt->elt'), In x (mapi f m) -> In x m. Proof. intros. apply mem_2. rewrite mem_find. destruct H as (v,H). generalize (find_1 H); clear H; intros. rewrite gmapi in H. destruct (find x m); auto. simpl in *; discriminate. Qed. Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'), MapsTo x e m -> MapsTo x (f e) (map f m). Proof. intros; unfold map. destruct (mapi_1 (fun _ => f) H); intuition. Qed. Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m. Proof. intros; unfold map in *; eapply mapi_2; eauto. Qed. Section map2. Variable A B C : Type. Variable f : option A -> option B -> option C. Implicit Arguments Leaf [A]. Fixpoint xmap2_l (m : t A) {struct m} : t C := match m with | Leaf => Leaf | Node l o r => Node (xmap2_l l) (f o None) (xmap2_l r) end. Lemma xgmap2_l : forall (i : positive) (m : t A), f None None = None -> find i (xmap2_l m) = f (find i m) None. Proof. induction i; intros; destruct m; simpl; auto. Qed. Fixpoint xmap2_r (m : t B) {struct m} : t C := match m with | Leaf => Leaf | Node l o r => Node (xmap2_r l) (f None o) (xmap2_r r) end. Lemma xgmap2_r : forall (i : positive) (m : t B), f None None = None -> find i (xmap2_r m) = f None (find i m). Proof. induction i; intros; destruct m; simpl; auto. Qed. Fixpoint _map2 (m1 : t A)(m2 : t B) {struct m1} : t C := match m1 with | Leaf => xmap2_r m2 | Node l1 o1 r1 => match m2 with | Leaf => xmap2_l m1 | Node l2 o2 r2 => Node (_map2 l1 l2) (f o1 o2) (_map2 r1 r2) end end. Lemma gmap2: forall (i: positive)(m1:t A)(m2: t B), f None None = None -> find i (_map2 m1 m2) = f (find i m1) (find i m2). Proof. induction i; intros; destruct m1; destruct m2; simpl; auto; try apply xgmap2_r; try apply xgmap2_l; auto. Qed. End map2. Definition map2 (elt elt' elt'':Type)(f:option elt->option elt'->option elt'') := _map2 (fun o1 o2 => match o1,o2 with None,None => None | _, _ => f o1 o2 end). Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m'). Proof. intros. unfold map2. rewrite gmap2; auto. generalize (@mem_1 _ m x) (@mem_1 _ m' x). do 2 rewrite mem_find. destruct (find x m); simpl; auto. destruct (find x m'); simpl; auto. intros. destruct H; intuition; try discriminate. Qed. Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x (map2 f m m') -> In x m \/ In x m'. Proof. intros. generalize (mem_1 H); clear H; intros. rewrite mem_find in H. unfold map2 in H. rewrite gmap2 in H; auto. generalize (@mem_2 _ m x) (@mem_2 _ m' x). do 2 rewrite mem_find. destruct (find x m); simpl in *; auto. destruct (find x m'); simpl in *; auto. Qed. Section Fold. Variables A B : Type. Variable f : positive -> A -> B -> B. Fixpoint xfoldi (m : t A) (v : B) (i : positive) := match m with | Leaf => v | Node l (Some x) r => xfoldi r (f i x (xfoldi l v (append i 2))) (append i 3) | Node l None r => xfoldi r (xfoldi l v (append i 2)) (append i 3) end. Lemma xfoldi_1 : forall m v i, xfoldi m v i = fold_left (fun a p => f (fst p) (snd p) a) (xelements m i) v. Proof. set (F := fun a p => f (fst p) (snd p) a). induction m; intros; simpl; auto. destruct o. rewrite fold_left_app; simpl. rewrite <- IHm1. rewrite <- IHm2. unfold F; simpl; reflexivity. rewrite fold_left_app; simpl. rewrite <- IHm1. rewrite <- IHm2. reflexivity. Qed. Definition fold m i := xfoldi m i 1. End Fold. Lemma fold_1 : forall (A:Type)(m:t A)(B:Type)(i : B) (f : key -> A -> B -> B), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i. Proof. intros; unfold fold, elements. rewrite xfoldi_1; reflexivity. Qed. Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) {struct m1} : bool := match m1, m2 with | Leaf, _ => is_empty m2 | _, Leaf => is_empty m1 | Node l1 o1 r1, Node l2 o2 r2 => (match o1, o2 with | None, None => true | Some v1, Some v2 => cmp v1 v2 | _, _ => false end) && equal cmp l1 l2 && equal cmp r1 r2 end. Definition Equal (A:Type)(m m':t A) := forall y, find y m = find y m'. Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e'). Definition Equivb (A:Type)(cmp: A->A->bool) := Equiv (Cmp cmp). Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool), Equivb cmp m m' -> equal cmp m m' = true. Proof. induction m. (* m = Leaf *) destruct 1. simpl. apply is_empty_1. red; red; intros. assert (In a (Leaf A)). rewrite H. exists e; auto. destruct H2; red in H2. destruct a; simpl in *; discriminate. (* m = Node *) destruct m'. (* m' = Leaf *) destruct 1. simpl. destruct o. assert (In xH (Leaf A)). rewrite <- H. exists a; red; auto. destruct H1; red in H1; simpl in H1; discriminate. apply andb_true_intro; split; apply is_empty_1; red; red; intros. assert (In (xO a) (Leaf A)). rewrite <- H. exists e; auto. destruct H2; red in H2; simpl in H2; discriminate. assert (In (xI a) (Leaf A)). rewrite <- H. exists e; auto. destruct H2; red in H2; simpl in H2; discriminate. (* m' = Node *) destruct 1. assert (Equivb cmp m1 m'1). split. intros k; generalize (H (xO k)); unfold In, MapsTo; simpl; auto. intros k e e'; generalize (H0 (xO k) e e'); unfold In, MapsTo; simpl; auto. assert (Equivb cmp m2 m'2). split. intros k; generalize (H (xI k)); unfold In, MapsTo; simpl; auto. intros k e e'; generalize (H0 (xI k) e e'); unfold In, MapsTo; simpl; auto. simpl. destruct o; destruct o0; simpl. repeat (apply andb_true_intro; split); auto. apply (H0 xH); red; auto. generalize (H xH); unfold In, MapsTo; simpl; intuition. destruct H4; try discriminate; eauto. generalize (H xH); unfold In, MapsTo; simpl; intuition. destruct H5; try discriminate; eauto. apply andb_true_intro; split; auto. Qed. Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool), equal cmp m m' = true -> Equivb cmp m m'. Proof. induction m. (* m = Leaf *) simpl. split; intros. split. destruct 1; red in H0; destruct k; discriminate. destruct 1; elim (is_empty_2 H H0). red in H0; destruct k; discriminate. (* m = Node *) destruct m'. (* m' = Leaf *) simpl. destruct o; intros; try discriminate. destruct (andb_prop _ _ H); clear H. split; intros. split; unfold In, MapsTo; destruct 1. destruct k; simpl in *; try discriminate. destruct (is_empty_2 H1 (find_2 _ _ H)). destruct (is_empty_2 H0 (find_2 _ _ H)). destruct k; simpl in *; discriminate. unfold In, MapsTo; destruct k; simpl in *; discriminate. (* m' = Node *) destruct o; destruct o0; simpl; intros; try discriminate. destruct (andb_prop _ _ H); clear H. destruct (andb_prop _ _ H0); clear H0. destruct (IHm1 _ _ H2); clear H2 IHm1. destruct (IHm2 _ _ H1); clear H1 IHm2. split; intros. destruct k; unfold In, MapsTo in *; simpl; auto. split; eauto. destruct k; unfold In, MapsTo in *; simpl in *. eapply H4; eauto. eapply H3; eauto. congruence. destruct (andb_prop _ _ H); clear H. destruct (IHm1 _ _ H0); clear H0 IHm1. destruct (IHm2 _ _ H1); clear H1 IHm2. split; intros. destruct k; unfold In, MapsTo in *; simpl; auto. split; eauto. destruct k; unfold In, MapsTo in *; simpl in *. eapply H3; eauto. eapply H2; eauto. try discriminate. Qed. End PositiveMap. (** Here come some additionnal facts about this implementation. Most are facts that cannot be derivable from the general interface. *) Module PositiveMapAdditionalFacts. Import PositiveMap. (* Derivable from the Map interface *) Theorem gsspec: forall (A:Type)(i j: positive) (x: A) (m: t A), find i (add j x m) = if E.eq_dec i j then Some x else find i m. Proof. intros. destruct (E.eq_dec i j); [ rewrite e; apply gss | apply gso; auto ]. Qed. (* Not derivable from the Map interface *) Theorem gsident: forall (A:Type)(i: positive) (m: t A) (v: A), find i m = Some v -> add i v m = m. Proof. induction i; intros; destruct m; simpl; simpl in H; try congruence. rewrite (IHi m2 v H); congruence. rewrite (IHi m1 v H); congruence. Qed. Lemma xmap2_lr : forall (A B : Type)(f g: option A -> option A -> option B)(m : t A), (forall (i j : option A), f i j = g j i) -> xmap2_l f m = xmap2_r g m. Proof. induction m; intros; simpl; auto. rewrite IHm1; auto. rewrite IHm2; auto. rewrite H; auto. Qed. Theorem map2_commut: forall (A B: Type) (f g: option A -> option A -> option B), (forall (i j: option A), f i j = g j i) -> forall (m1 m2: t A), _map2 f m1 m2 = _map2 g m2 m1. Proof. intros A B f g Eq1. assert (Eq2: forall (i j: option A), g i j = f j i). intros; auto. induction m1; intros; destruct m2; simpl; try rewrite Eq1; repeat rewrite (xmap2_lr f g); repeat rewrite (xmap2_lr g f); auto. rewrite IHm1_1. rewrite IHm1_2. auto. Qed. End PositiveMapAdditionalFacts.