(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Set. (** the abstract type of maps *) Section Types. Variable elt:Set. Parameter empty : t elt. (** The empty map. *) Parameter is_empty : t elt -> bool. (** Test whether a map is empty or not. *) Parameter add : key -> elt -> t elt -> t elt. (** [add x y m] returns a map containing the same bindings as [m], plus a binding of [x] to [y]. If [x] was already bound in [m], its previous binding disappears. *) Parameter find : key -> t elt -> option elt. (** [find x m] returns the current binding of [x] in [m], or [None] if no such binding exists. *) Parameter remove : key -> t elt -> t elt. (** [remove x m] returns a map containing the same bindings as [m], except for [x] which is unbound in the returned map. *) Parameter mem : key -> t elt -> bool. (** [mem x m] returns [true] if [m] contains a binding for [x], and [false] otherwise. *) Variable elt' : Set. Variable elt'': Set. Parameter map : (elt -> elt') -> t elt -> t elt'. (** [map f m] returns a map with same domain as [m], where the associated value a of all bindings of [m] has been replaced by the result of the application of [f] to [a]. Since Coq is purely functional, the order in which the bindings are passed to [f] is irrelevant. *) Parameter mapi : (key -> elt -> elt') -> t elt -> t elt'. (** Same as [map], but the function receives as arguments both the key and the associated value for each binding of the map. *) Parameter map2 : (option elt -> option elt' -> option elt'') -> t elt -> t elt' -> t elt''. (** [map2 f m m'] creates a new map whose bindings belong to the ones of either [m] or [m']. The presence and value for a key [k] is determined by [f e e'] where [e] and [e'] are the (optional) bindings of [k] in [m] and [m']. *) Parameter elements : t elt -> list (key*elt). (** [elements m] returns an assoc list corresponding to the bindings of [m], in any order. *) Parameter cardinal : t elt -> nat. (** [cardinal m] returns the number of bindings in [m]. *) Parameter fold : forall A: Type, (key -> elt -> A -> A) -> t elt -> A -> A. (** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)], where [k1] ... [kN] are the keys of all bindings in [m] (in any order), and [d1] ... [dN] are the associated data. *) Parameter equal : (elt -> elt -> bool) -> t elt -> t elt -> bool. (** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are equal, that is, contain equal keys and associate them with equal data. [cmp] is the equality predicate used to compare the data associated with the keys. *) Section Spec. Variable m m' m'' : t elt. Variable x y z : key. Variable e e' : elt. Parameter MapsTo : key -> elt -> t elt -> Prop. Definition In (k:key)(m: t elt) : Prop := exists e:elt, MapsTo k e m. Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m. Definition eq_key (p p':key*elt) := E.eq (fst p) (fst p'). Definition eq_key_elt (p p':key*elt) := E.eq (fst p) (fst p') /\ (snd p) = (snd p'). (** Specification of [MapsTo] *) Parameter MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m. (** Specification of [mem] *) Parameter mem_1 : In x m -> mem x m = true. Parameter mem_2 : mem x m = true -> In x m. (** Specification of [empty] *) Parameter empty_1 : Empty empty. (** Specification of [is_empty] *) Parameter is_empty_1 : Empty m -> is_empty m = true. Parameter is_empty_2 : is_empty m = true -> Empty m. (** Specification of [add] *) Parameter add_1 : E.eq x y -> MapsTo y e (add x e m). Parameter add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m). Parameter add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m. (** Specification of [remove] *) Parameter remove_1 : E.eq x y -> ~ In y (remove x m). Parameter remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m). Parameter remove_3 : MapsTo y e (remove x m) -> MapsTo y e m. (** Specification of [find] *) Parameter find_1 : MapsTo x e m -> find x m = Some e. Parameter find_2 : find x m = Some e -> MapsTo x e m. (** Specification of [elements] *) Parameter elements_1 : MapsTo x e m -> InA eq_key_elt (x,e) (elements m). Parameter elements_2 : InA eq_key_elt (x,e) (elements m) -> MapsTo x e m. (** When compared with ordered maps, here comes the only property that is really weaker: *) Parameter elements_3w : NoDupA eq_key (elements m). (** Specification of [cardinal] *) Parameter cardinal_1 : cardinal m = length (elements m). (** Specification of [fold] *) Parameter fold_1 : forall (A : Type) (i : A) (f : key -> elt -> A -> A), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i. Definition Equal cmp m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true). Variable cmp : elt -> elt -> bool. (** Specification of [equal] *) Parameter equal_1 : Equal cmp m m' -> equal cmp m m' = true. Parameter equal_2 : equal cmp m m' = true -> Equal cmp m m'. End Spec. End Types. (** Specification of [map] *) Parameter map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'), MapsTo x e m -> MapsTo x (f e) (map f m). Parameter map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m. (** Specification of [mapi] *) Parameter mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt) (f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). Parameter mapi_2 : forall (elt elt':Set)(m: t elt)(x:key) (f:key->elt->elt'), In x (mapi f m) -> In x m. (** Specification of [map2] *) Parameter map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m'). Parameter map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x (map2 f m m') -> In x m \/ In x m'. Hint Immediate MapsTo_1 mem_2 is_empty_2 map_2 mapi_2 add_3 remove_3 find_2 : map. Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1 remove_2 find_1 fold_1 map_1 mapi_1 mapi_2 : map. End WSfun. (** ** Static signature for Weak Maps Similar to [WSfun] but expressed in a self-contained way. *) Module Type WS. Declare Module E : EqualityType. Include Type WSfun E. End WS. (** ** Maps on ordered keys, functorial signature *) Module Type Sfun (E : OrderedType). Include Type WSfun E. Section elt. Variable elt:Set. Definition lt_key (p p':key*elt) := E.lt (fst p) (fst p'). (* Additional specification of [elements] *) Parameter elements_3 : forall m, sort lt_key (elements m). (** Remark: since [fold] is specified via [elements], this stronger specification of [elements] has an indirect impact on [fold], which can now be proved to receive elements in increasing order. *) End elt. End Sfun. (** ** Maps on ordered keys, self-contained signature *) Module Type S. Declare Module E : OrderedType. Include Type Sfun E. End S. (** ** Maps with ordering both on keys and datas *) Module Type Sord. Declare Module Data : OrderedType. Declare Module MapS : S. Import MapS. Definition t := MapS.t Data.t. Parameter eq : t -> t -> Prop. Parameter lt : t -> t -> Prop. Axiom eq_refl : forall m : t, eq m m. Axiom eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1. Axiom eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3. Axiom lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3. Axiom lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2. Definition cmp e e' := match Data.compare e e' with EQ _ => true | _ => false end. Parameter eq_1 : forall m m', Equal cmp m m' -> eq m m'. Parameter eq_2 : forall m m', eq m m' -> Equal cmp m m'. Parameter compare : forall m1 m2, Compare lt eq m1 m2. (** Total ordering between maps. [Data.compare] is a total ordering used to compare data associated with equal keys in the two maps. *) End Sord.