(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ~ eq x y. Proof. intros; intro. rewrite H0 in H. red in H. rewrite Nless_not_refl in H; discriminate. Qed. Definition compare : forall x y : t, Compare lt eq x y. Proof. intros x y. destruct (Nless_total x y) as [[H|H]|H]. apply LT; unfold lt; auto. apply GT; unfold lt; auto. apply EQ; auto. Qed. End NUsualOrderedType. (** The module of maps over [N] keys based on [IntMap] *) Module MapIntMap <: S with Module E:=NUsualOrderedType. Module E:=NUsualOrderedType. Module ME:=OrderedTypeFacts(E). Module PE:=KeyOrderedType(E). Definition key := N. Definition t := Map. Section A. Variable A:Set. Definition empty : t A := M0 A. Definition is_empty (m : t A) : bool := MapEmptyp _ (MapCanonicalize _ m). Definition find (x:key)(m: t A) : option A := MapGet _ m x. Definition mem (x:key)(m: t A) : bool := match find x m with | Some _ => true | None => false end. Definition add (x:key)(v:A)(m:t A) : t A := MapPut _ m x v. Definition remove (x:key)(m:t A) : t A := MapRemove _ m x. Definition elements (m : t A) : list (N*A) := alist_of_Map _ m. Definition cardinal (m : t A) : nat := MapCard _ m. Definition MapsTo (x:key)(v:A)(m:t A) := find x m = Some v. Definition In (x:key)(m:t A) := exists e:A, MapsTo x e m. Definition Empty m := forall (a : key)(e:A) , ~ MapsTo a e m. Definition eq_key (p p':key*A) := E.eq (fst p) (fst p'). Definition eq_key_elt (p p':key*A) := E.eq (fst p) (fst p') /\ (snd p) = (snd p'). Definition lt_key (p p':key*A) := E.lt (fst p) (fst p'). Lemma Empty_alt : forall m, Empty m <-> forall a, find a m = None. Proof. unfold Empty, MapsTo. intuition. generalize (H a). destruct (find a m); intuition. elim (H0 a0); auto. rewrite H in H0; discriminate. Qed. Section Spec. Variable m m' m'' : t A. Variable x y z : key. Variable e e' : A. Lemma MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m. Proof. intros; rewrite <- H; auto. Qed. Lemma find_1 : MapsTo x e m -> find x m = Some e. Proof. unfold MapsTo; auto. Qed. Lemma find_2 : find x m = Some e -> MapsTo x e m. Proof. red; auto. Qed. Lemma empty_1 : Empty empty. Proof. rewrite Empty_alt; intros; unfold empty, find; simpl; auto. Qed. Lemma is_empty_1 : Empty m -> is_empty m = true. Proof. unfold Empty, is_empty, find; intros. cut (MapCanonicalize _ m = M0 _). intros; rewrite H0; simpl; auto. apply mapcanon_unique. apply mapcanon_exists_2. constructor. red; red; simpl; intros. rewrite <- (mapcanon_exists_1 _ m). unfold MapsTo, find in *. generalize (H a). destruct (MapGet _ m a); auto. intros; generalize (H0 a0); destruct 1; auto. Qed. Lemma is_empty_2 : is_empty m = true -> Empty m. Proof. unfold Empty, is_empty, MapsTo, find; intros. generalize (MapEmptyp_complete _ _ H); clear H; intros. rewrite (mapcanon_exists_1 _ m). rewrite H; simpl; auto. discriminate. Qed. Lemma mem_1 : In x m -> mem x m = true. Proof. unfold In, MapsTo, mem. destruct (find x m); auto. destruct 1; discriminate. Qed. Lemma mem_2 : forall m x, mem x m = true -> In x m. Proof. unfold In, MapsTo, mem. intros. destruct (find x0 m0); auto; try discriminate. exists a; auto. Qed. Lemma add_1 : E.eq x y -> MapsTo y e (add x e m). Proof. unfold MapsTo, find, add. intro H; rewrite H; clear H. rewrite MapPut_semantics. rewrite Neqb_correct; auto. Qed. Lemma add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m). Proof. unfold MapsTo, find, add. intros. rewrite MapPut_semantics. rewrite H0. generalize (Neqb_complete x y). destruct (Neqb x y); auto. intros. elim H; auto. apply H1; auto. Qed. Lemma add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m. Proof. unfold MapsTo, find, add. rewrite MapPut_semantics. intro H. generalize (Neqb_complete x y). destruct (Neqb x y); auto. intros; elim H; auto. apply H0; auto. Qed. Lemma remove_1 : E.eq x y -> ~ In y (remove x m). Proof. unfold In, MapsTo, find, remove. rewrite MapRemove_semantics. intro H. rewrite H; rewrite Neqb_correct. red; destruct 1; discriminate. Qed. Lemma remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m). Proof. unfold MapsTo, find, remove. rewrite MapRemove_semantics. intros. rewrite H0. generalize (Neqb_complete x y). destruct (Neqb x y); auto. intros; elim H; apply H1; auto. Qed. Lemma remove_3 : MapsTo y e (remove x m) -> MapsTo y e m. Proof. unfold MapsTo, find, remove. rewrite MapRemove_semantics. destruct (Neqb x y); intros; auto. discriminate. Qed. Lemma alist_sorted_sort : forall l, alist_sorted A l=true -> sort lt_key l. Proof. induction l. auto. simpl. destruct a. destruct l. auto. destruct p. intros; destruct (andb_prop _ _ H); auto. Qed. Lemma elements_3 : sort lt_key (elements m). Proof. unfold elements. apply alist_sorted_sort. apply alist_of_Map_sorts. Qed. Lemma elements_3w : NoDupA eq_key (elements m). Proof. change eq_key with (@PE.eqk A). apply PE.Sort_NoDupA; apply elements_3; auto. Qed. Lemma elements_1 : MapsTo x e m -> InA eq_key_elt (x,e) (elements m). Proof. unfold MapsTo, find, elements. rewrite InA_alt. intro H. exists (x,e). split. red; simpl; unfold E.eq; auto. rewrite alist_of_Map_semantics in H. generalize H. set (l:=alist_of_Map A m); clearbody l; clear. induction l; simpl; auto. intro; discriminate. destruct a; simpl; auto. generalize (Neqb_complete a x). destruct (Neqb a x); auto. left. injection H0; auto. intros; f_equal; auto. Qed. Lemma elements_2 : InA eq_key_elt (x,e) (elements m) -> MapsTo x e m. Proof. generalize elements_3. unfold MapsTo, find, elements. rewrite InA_alt. intros H ((e0,a),(H0,H1)). red in H0; simpl in H0; unfold E.eq in H0; destruct H0; subst. rewrite alist_of_Map_semantics. generalize H H1; clear H H1. set (l:=alist_of_Map A m); clearbody l; clear. induction l; simpl; auto. intro; contradiction. intros. destruct a0; simpl. inversion H1. injection H0; intros; subst. rewrite Neqb_correct; auto. assert (InA eq_key (e0,a) l). rewrite InA_alt. exists (e0,a); split; auto. red; simpl; auto; red; auto. generalize (PE.Sort_In_cons_1 H H2). unfold PE.ltk; simpl. intros H3; generalize (E.lt_not_eq H3). generalize (Neqb_complete a0 e0). destruct (Neqb a0 e0); auto. destruct 2. apply H4; auto. inversion H; auto. Qed. Lemma cardinal_1 : forall m, cardinal m = length (elements m). Proof. exact (@MapCard_as_length _). Qed. Definition Equal cmp m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true). (** unfortunately, the [MapFold] of [IntMap] isn't compatible with the FMap interface. We use a naive version for now : *) Definition fold (B:Type)(f:key -> A -> B -> B)(m:t A)(i:B) : B := fold_left (fun a p => f (fst p) (snd p) a) (elements m) i. Lemma fold_1 : forall (B:Type) (i : B) (f : key -> A -> B -> B), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i. Proof. auto. Qed. End Spec. Variable B : Set. Fixpoint mapi_aux (pf:N->N)(f : N -> A -> B)(m:t A) { struct m }: t B := match m with | M0 => M0 _ | M1 x y => M1 _ x (f (pf x) y) | M2 m0 m1 => M2 _ (mapi_aux (fun n => pf (Ndouble n)) f m0) (mapi_aux (fun n => pf (Ndouble_plus_one n)) f m1) end. Definition mapi := mapi_aux (fun n => n). Definition map (f:A->B) := mapi (fun _ => f). End A. Lemma mapi_aux_1 : forall (elt elt':Set)(m: t elt)(pf:N->N)(x:key)(e:elt) (f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f (pf y) e) (mapi_aux pf f m). Proof. unfold MapsTo; induction m; simpl; auto. inversion 1. intros. exists x; split; [red; auto|]. generalize (Neqb_complete a x). destruct (Neqb a x); try discriminate. injection H; intros; subst; auto. rewrite H1; auto. intros. exists x; split; [red;auto|]. destruct x; simpl in *. destruct (IHm1 (fun n : N => pf (Ndouble n)) _ _ f H) as (y,(Hy,Hy')). rewrite Hy in Hy'; simpl in Hy'; auto. destruct p; simpl in *. destruct (IHm2 (fun n : N => pf (Ndouble_plus_one n)) _ _ f H) as (y,(Hy,Hy')). rewrite Hy in Hy'; simpl in Hy'; auto. destruct (IHm1 (fun n : N => pf (Ndouble n)) _ _ f H) as (y,(Hy,Hy')). rewrite Hy in Hy'; simpl in Hy'; auto. destruct (IHm2 (fun n : N => pf (Ndouble_plus_one n)) _ _ f H) as (y,(Hy,Hy')). rewrite Hy in Hy'; simpl in Hy'; auto. Qed. Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt) (f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). Proof. intros elt elt' m; exact (mapi_aux_1 (fun n => n)). Qed. Lemma mapi_aux_2 : forall (elt elt':Set)(m: t elt)(pf:N->N)(x:key) (f:key->elt->elt'), In x (mapi_aux pf f m) -> In x m. Proof. unfold In, MapsTo. induction m; simpl in *. intros pf x f (e,He); inversion He. intros pf x f (e,He). exists a0. destruct (Neqb a x); try discriminate; auto. intros pf x f (e,He). destruct x; [|destruct p]; eauto. Qed. Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key) (f:key->elt->elt'), In x (mapi f m) -> In x m. Proof. intros elt elt' m; exact (mapi_aux_2 m (fun n => n)). Qed. Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'), MapsTo x e m -> MapsTo x (f e) (map f m). Proof. unfold map; intros. destruct (@mapi_1 _ _ m x e (fun _ => f)) as (e',(_,H0)); auto. Qed. Lemma map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m. Proof. unfold map; intros. eapply mapi_2; eauto. Qed. Module L := FMapList.Raw E. (** Not exactly pretty nor perfect, but should suffice as a first naive implem. Anyway, map2 isn't in Ocaml... *) Definition anti_elements (A:Set)(l:list (key*A)) := L.fold (@add _) l (empty _). Definition map2 (A B C:Set)(f:option A->option B -> option C)(m:t A)(m':t B) : t C := anti_elements (L.map2 f (elements m) (elements m')). Lemma add_spec : forall (A:Set)(m:t A) x y e, find x (add y e m) = if ME.eq_dec x y then Some e else find x m. Proof. intros. destruct (ME.eq_dec x y). apply find_1. eapply MapsTo_1 with y; eauto. red; auto. apply add_1; auto. red; auto. case_eq (find x m); intros. apply find_1. apply add_2; unfold E.eq in *; auto. case_eq (find x (add y e m)); auto; intros. rewrite <- H; symmetry. apply find_1; auto. apply (@add_3 _ m y x a e); unfold E.eq in *; auto. Qed. Lemma anti_elements_mapsto_aux : forall (A:Set)(l:list (key*A)) m k e, NoDupA (eq_key (A:=A)) l -> (forall x, L.PX.In x l -> In x m -> False) -> (MapsTo k e (L.fold (@add _) l m) <-> L.PX.MapsTo k e l \/ MapsTo k e m). Proof. induction l. simpl; auto. intuition. inversion H2. simpl; destruct a; intros. rewrite IHl; clear IHl. inversion H; auto. intros. inversion_clear H. assert (~E.eq x k). contradict H3. destruct H1. apply InA_eqA with (x,x0); eauto. unfold eq_key, E.eq; eauto. unfold eq_key, E.eq; congruence. apply (H0 x). destruct H1; exists x0; auto. revert H2. unfold In. intros (e',He'). exists e'; apply (@add_3 _ m k x e' a); unfold E.eq; auto. intuition. red in H2. rewrite add_spec in H2; auto. destruct (ME.eq_dec k0 k). inversion_clear H2; subst; auto. right; apply find_2; auto. inversion_clear H2; auto. compute in H1; destruct H1. subst; right; apply add_1; auto. red; auto. inversion_clear H. destruct (ME.eq_dec k0 k). unfold E.eq in *; subst. destruct (H0 k); eauto. red; eauto. right; apply add_2; unfold E.eq in *; auto. Qed. Lemma anti_elements_mapsto : forall (A:Set) l k e, NoDupA (eq_key (A:=A)) l -> (MapsTo k e (anti_elements l) <-> L.PX.MapsTo k e l). Proof. intros. unfold anti_elements. rewrite anti_elements_mapsto_aux; auto; unfold empty; auto. inversion 2. inversion H2. intuition. inversion H1. Qed. Lemma find_anti_elements : forall (A:Set)(l: list (key*A)) x, sort (@lt_key _) l -> find x (anti_elements l) = L.find x l. Proof. intros. case_eq (L.find x l); intros. apply find_1. rewrite anti_elements_mapsto. apply L.PX.Sort_NoDupA; auto. apply L.find_2; auto. case_eq (find x (anti_elements l)); auto; intros. rewrite <- H0; symmetry. apply L.find_1; auto. rewrite <- anti_elements_mapsto. apply L.PX.Sort_NoDupA; auto. apply find_2; auto. Qed. Lemma find_elements : forall (A:Set)(m: t A) x, L.find x (elements m) = find x m. Proof. intros. case_eq (find x m); intros. apply L.find_1. apply elements_3; auto. red; apply elements_1. apply find_2; auto. case_eq (L.find x (elements m)); auto; intros. rewrite <- H; symmetry. apply find_1; auto. apply elements_2. apply L.find_2; auto. Qed. Lemma elements_in : forall (A:Set)(s:t A) x, L.PX.In x (elements s) <-> In x s. Proof. intros. unfold L.PX.In, In. firstorder. exists x0. red; rewrite <- find_elements; auto. apply L.find_1; auto. apply elements_3. exists x0. apply L.find_2. rewrite find_elements; auto. Qed. Lemma map2_1 : forall (A B C:Set)(m: t A)(m': t B)(x:key) (f:option A->option B ->option C), In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m'). Proof. unfold map2; intros. rewrite find_anti_elements; auto. rewrite <- find_elements; auto. rewrite <- find_elements; auto. apply L.map2_1; auto. apply elements_3; auto. apply elements_3; auto. do 2 rewrite elements_in; auto. apply L.map2_sorted; auto. apply elements_3; auto. apply elements_3; auto. Qed. Lemma map2_2 : forall (A B C: Set)(m: t A)(m': t B)(x:key) (f:option A->option B ->option C), In x (map2 f m m') -> In x m \/ In x m'. Proof. unfold map2; intros. do 2 rewrite <- elements_in. apply L.map2_2 with (f:=f); auto. apply elements_3; auto. apply elements_3; auto. destruct H. exists x0. rewrite <- anti_elements_mapsto; auto. apply L.PX.Sort_NoDupA; auto. apply L.map2_sorted; auto. apply elements_3; auto. apply elements_3; auto. Qed. (** same trick for [equal] *) Definition equal (A:Set)(cmp:A -> A -> bool)(m m' : t A) : bool := L.equal cmp (elements m) (elements m'). Lemma equal_1 : forall (A:Set)(m: t A)(m': t A)(cmp: A -> A -> bool), Equal cmp m m' -> equal cmp m m' = true. Proof. unfold equal, Equal. intros. apply L.equal_1. apply elements_3. apply elements_3. unfold L.Equal. destruct H. split; intros. do 2 rewrite elements_in; auto. apply (H0 k); red; rewrite <- find_elements; apply L.find_1; auto; apply elements_3. Qed. Lemma equal_2 : forall (A:Set)(m: t A)(m': t A)(cmp: A -> A -> bool), equal cmp m m' = true -> Equal cmp m m'. Proof. unfold equal, Equal. intros. destruct (L.equal_2 (elements_3 m) (elements_3 m') H); clear H. split. intros; do 2 rewrite <- elements_in; auto. intros; apply (H1 k); apply L.find_2; rewrite find_elements;auto. Qed. End MapIntMap.