(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.RelationClasses") -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R x y -> False. Definition pointwise_relation {A B : Type} (R : relation B) : relation (A -> B) := fun f g => forall x : A, R (f x) (g x). (** These are convertible. *) Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R). Proof. reflexivity. Qed. (** We rebind relations in separate classes to be able to overload each proof. *) Set Implicit Arguments. Unset Strict Implicit. Class Reflexive A (R : relation A) := reflexivity : forall x, R x x. Class Irreflexive A (R : relation A) := irreflexivity : forall x, R x x -> False. Class Symmetric A (R : relation A) := symmetry : forall x y, R x y -> R y x. Class Asymmetric A (R : relation A) := asymmetry : forall x y, R x y -> R y x -> False. Class Transitive A (R : relation A) := transitivity : forall x y z, R x y -> R y z -> R x z. Implicit Arguments Reflexive [A]. Implicit Arguments Irreflexive [A]. Implicit Arguments Symmetric [A]. Implicit Arguments Asymmetric [A]. Implicit Arguments Transitive [A]. Hint Resolve @irreflexivity : ord. Unset Implicit Arguments. (** We can already dualize all these properties. *) Program Instance [ Reflexive A R ] => flip_Reflexive : Reflexive (flip R) := reflexivity := reflexivity (R:=R). Program Instance [ Irreflexive A R ] => flip_Irreflexive : Irreflexive (flip R) := irreflexivity := irreflexivity (R:=R). Program Instance [ Symmetric A R ] => flip_Symmetric : Symmetric (flip R). Solve Obligations using unfold flip ; program_simpl ; clapply Symmetric. Program Instance [ Asymmetric A R ] => flip_Asymmetric : Asymmetric (flip R). Solve Obligations using program_simpl ; unfold flip in * ; intros ; clapply asymmetry. Program Instance [ Transitive A R ] => flip_Transitive : Transitive (flip R). Solve Obligations using unfold flip ; program_simpl ; clapply transitivity. Program Instance [ Reflexive A (R : relation A) ] => Reflexive_complement_Irreflexive : Irreflexive (complement R). Program Instance [ Irreflexive A (R : relation A) ] => Irreflexive_complement_Reflexive : Reflexive (complement R). Next Obligation. Proof. red. intros H. apply (irreflexivity H). Qed. Program Instance [ Symmetric A (R : relation A) ] => complement_Symmetric : Symmetric (complement R). Next Obligation. Proof. red ; intros H'. apply (H (symmetry H')). Qed. (** * Standard instances. *) Ltac reduce_hyp H := match type of H with | context [ _ <-> _ ] => fail 1 | _ => red in H ; try reduce_hyp H end. Ltac reduce_goal := match goal with | [ |- _ <-> _ ] => fail 1 | _ => red ; intros ; try reduce_goal end. Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid. Ltac reduce := reduce_goal. Tactic Notation "apply" "*" constr(t) := first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) | refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ]. Ltac simpl_relation := unfold flip, impl, arrow ; try reduce ; program_simpl ; try ( solve [ intuition ]). Ltac obligations_tactic ::= simpl_relation. (** Logical implication. *) Program Instance impl_Reflexive : Reflexive impl. Program Instance impl_Transitive : Transitive impl. (** Logical equivalence. *) Program Instance iff_Reflexive : Reflexive iff. Program Instance iff_Symmetric : Symmetric iff. Program Instance iff_Transitive : Transitive iff. (** Leibniz equality. *) Program Instance eq_Reflexive : Reflexive (@eq A). Program Instance eq_Symmetric : Symmetric (@eq A). Program Instance eq_Transitive : Transitive (@eq A). (** Various combinations of reflexivity, symmetry and transitivity. *) (** A [PreOrder] is both Reflexive and Transitive. *) Class PreOrder A (R : relation A) := PreOrder_Reflexive :> Reflexive R ; PreOrder_Transitive :> Transitive R. (** A partial equivalence relation is Symmetric and Transitive. *) Class PER (carrier : Type) (pequiv : relation carrier) := PER_Symmetric :> Symmetric pequiv ; PER_Transitive :> Transitive pequiv. (** We can build a PER on the Coq function space if we have PERs on the domain and codomain. *) Program Instance [ PER A (R : relation A), PER B (R' : relation B) ] => arrow_per : PER (A -> B) (fun f g => forall (x y : A), R x y -> R' (f x) (g y)). Next Obligation. Proof with auto. assert(R x0 x0). transitivity y0... symmetry... transitivity (y x0)... Qed. (** The [Equivalence] typeclass. *) Class Equivalence (carrier : Type) (equiv : relation carrier) := Equivalence_Reflexive :> Reflexive equiv ; Equivalence_Symmetric :> Symmetric equiv ; Equivalence_Transitive :> Transitive equiv. (** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *) Class [ Equivalence A eqA ] => Antisymmetric (R : relation A) := antisymmetry : forall x y, R x y -> R y x -> eqA x y. Program Instance [ eq : Equivalence A eqA, ! Antisymmetric eq R ] => flip_antiSymmetric : Antisymmetric eq (flip R). (** Leibinz equality [eq] is an equivalence relation. The instance has low priority as it is always applicable if only the type is constrained. *) Program Instance eq_equivalence : Equivalence A (@eq A) | 10. (** Logical equivalence [iff] is an equivalence relation. *) Program Instance iff_equivalence : Equivalence Prop iff. (** We now develop a generalization of results on relations for arbitrary predicates. The resulting theory can be applied to homogeneous binary relations but also to arbitrary n-ary predicates. *) Require Import List. (* Notation " [ ] " := nil : list_scope. *) (* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *) (* Open Local Scope list_scope. *) (** A compact representation of non-dependent arities, with the codomain singled-out. *) Fixpoint arrows (l : list Type) (r : Type) : Type := match l with | nil => r | A :: l' => A -> arrows l' r end. (** We can define abbreviations for operation and relation types based on [arrows]. *) Definition unary_operation A := arrows (cons A nil) A. Definition binary_operation A := arrows (cons A (cons A nil)) A. Definition ternary_operation A := arrows (cons A (cons A (cons A nil))) A. (** We define n-ary [predicate]s as functions into [Prop]. *) Notation predicate l := (arrows l Prop). (** Unary predicates, or sets. *) Definition unary_predicate A := predicate (cons A nil). (** Homogeneous binary relations, equivalent to [relation A]. *) Definition binary_relation A := predicate (cons A (cons A nil)). (** We can close a predicate by universal or existential quantification. *) Fixpoint predicate_all (l : list Type) : predicate l -> Prop := match l with | nil => fun f => f | A :: tl => fun f => forall x : A, predicate_all tl (f x) end. Fixpoint predicate_exists (l : list Type) : predicate l -> Prop := match l with | nil => fun f => f | A :: tl => fun f => exists x : A, predicate_exists tl (f x) end. (** Pointwise extension of a binary operation on [T] to a binary operation on functions whose codomain is [T]. For an operator on [Prop] this lifts the operator to a binary operation. *) Fixpoint pointwise_extension {T : Type} (op : binary_operation T) (l : list Type) : binary_operation (arrows l T) := match l with | nil => fun R R' => op R R' | A :: tl => fun R R' => fun x => pointwise_extension op tl (R x) (R' x) end. (** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *) Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) := match l with | nil => fun R R' => op R R' | A :: tl => fun R R' => forall x, pointwise_lifting op tl (R x) (R' x) end. (** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *) Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) := pointwise_lifting iff l. (** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *) Definition predicate_implication {l : list Type} := pointwise_lifting impl l. (** Notations for pointwise equivalence and implication of predicates. *) Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope. Infix "-∙>" := predicate_implication (at level 70) : predicate_scope. Open Local Scope predicate_scope. (** The pointwise liftings of conjunction and disjunctions. Note that these are [binary_operation]s, building new relations out of old ones. *) Definition predicate_intersection := pointwise_extension and. Definition predicate_union := pointwise_extension or. Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope. Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope. (** The always [True] and always [False] predicates. *) Fixpoint true_predicate {l : list Type} : predicate l := match l with | nil => True | A :: tl => fun _ => @true_predicate tl end. Fixpoint false_predicate {l : list Type} : predicate l := match l with | nil => False | A :: tl => fun _ => @false_predicate tl end. Notation "∙⊤∙" := true_predicate : predicate_scope. Notation "∙⊥∙" := false_predicate : predicate_scope. (** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *) Program Instance predicate_equivalence_equivalence : Equivalence (predicate l) predicate_equivalence. Next Obligation. induction l ; firstorder. Qed. Next Obligation. induction l ; firstorder. Qed. Next Obligation. fold pointwise_lifting. induction l. firstorder. intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)). firstorder. Qed. Program Instance predicate_implication_preorder : PreOrder (predicate l) predicate_implication. Next Obligation. induction l ; firstorder. Qed. Next Obligation. induction l. firstorder. unfold predicate_implication in *. simpl in *. intro. pose (IHl (x x0) (y x0) (z x0)). firstorder. Qed. (** We define the various operations which define the algebra on binary relations, from the general ones. *) Definition relation_equivalence {A : Type} : relation (relation A) := @predicate_equivalence (cons _ (cons _ nil)). Class subrelation {A:Type} (R R' : relation A) : Prop := is_subrelation : @predicate_implication (cons A (cons A nil)) R R'. Implicit Arguments subrelation [[A]]. Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A := @predicate_intersection (cons A (cons A nil)) R R'. Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A := @predicate_union (cons A (cons A nil)) R R'. (** Relation equivalence is an equivalence, and subrelation defines a partial order. *) Instance (A : Type) => relation_equivalence_equivalence : Equivalence (relation A) relation_equivalence. Proof. intro A. exact (@predicate_equivalence_equivalence (cons A (cons A nil))). Qed. Instance relation_implication_preorder : PreOrder (relation A) subrelation. Proof. intro A. exact (@predicate_implication_preorder (cons A (cons A nil))). Qed. (** *** Partial Order. A partial order is a preorder which is additionally antisymmetric. We give an equivalent definition, up-to an equivalence relation on the carrier. *) Class [ equ : Equivalence A eqA, PreOrder A R ] => PartialOrder := partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)). (** The equivalence proof is sufficient for proving that [R] must be a morphism for equivalence (see Morphisms). It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *) Instance [ PartialOrder A eqA R ] => partial_order_antisym : ! Antisymmetric A eqA R. Proof with auto. reduce_goal. pose partial_order_equivalence as poe. do 3 red in poe. apply <- poe. firstorder. Qed. (** The partial order defined by subrelation and relation equivalence. *) Program Instance subrelation_partial_order : ! PartialOrder (relation A) relation_equivalence subrelation. Next Obligation. Proof. unfold relation_equivalence in *. firstorder. Qed. Lemma inverse_pointwise_relation A (R : relation A) : relation_equivalence (pointwise_relation (inverse R)) (inverse (pointwise_relation (A:=A) R)). Proof. reflexivity. Qed.