(* -*- coding: utf-8 -*- *) (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* A -> Type. Definition arrow (A B : Type) := A -> B. Definition flip {A B C : Type} (f : A -> B -> C) := fun x y => f y x. Definition iffT (A B : Type) := ((A -> B) * (B -> A))%type. (** We allow to unfold the [crelation] definition while doing morphism search. *) Section Defs. Context {A : Type}. (** We rebind crelational properties in separate classes to be able to overload each proof. *) Class Reflexive (R : crelation A) := reflexivity : forall x : A, R x x. Definition complement (R : crelation A) : crelation A := fun x y => R x y -> False. (** Opaque for proof-search. *) Typeclasses Opaque complement iffT. (** These are convertible. *) Lemma complement_inverse R : complement (flip R) = flip (complement R). Proof. reflexivity. Qed. Class Irreflexive (R : crelation A) := irreflexivity : Reflexive (complement R). Class Symmetric (R : crelation A) := symmetry : forall {x y}, R x y -> R y x. Class Asymmetric (R : crelation A) := asymmetry : forall {x y}, R x y -> (complement R y x : Type). Class Transitive (R : crelation A) := transitivity : forall {x y z}, R x y -> R y z -> R x z. (** Various combinations of reflexivity, symmetry and transitivity. *) (** A [PreOrder] is both Reflexive and Transitive. *) Class PreOrder (R : crelation A) := { PreOrder_Reflexive :> Reflexive R | 2 ; PreOrder_Transitive :> Transitive R | 2 }. (** A [StrictOrder] is both Irreflexive and Transitive. *) Class StrictOrder (R : crelation A) := { StrictOrder_Irreflexive :> Irreflexive R ; StrictOrder_Transitive :> Transitive R }. (** By definition, a strict order is also asymmetric *) Global Instance StrictOrder_Asymmetric `(StrictOrder R) : Asymmetric R. Proof. firstorder. Qed. (** A partial equivalence crelation is Symmetric and Transitive. *) Class PER (R : crelation A) := { PER_Symmetric :> Symmetric R | 3 ; PER_Transitive :> Transitive R | 3 }. (** Equivalence crelations. *) Class Equivalence (R : crelation A) := { Equivalence_Reflexive :> Reflexive R ; Equivalence_Symmetric :> Symmetric R ; Equivalence_Transitive :> Transitive R }. (** An Equivalence is a PER plus reflexivity. *) Global Instance Equivalence_PER {R} `(Equivalence R) : PER R | 10 := { PER_Symmetric := Equivalence_Symmetric ; PER_Transitive := Equivalence_Transitive }. (** We can now define antisymmetry w.r.t. an equivalence crelation on the carrier. *) Class Antisymmetric eqA `{equ : Equivalence eqA} (R : crelation A) := antisymmetry : forall {x y}, R x y -> R y x -> eqA x y. Class subrelation (R R' : crelation A) := is_subrelation : forall {x y}, R x y -> R' x y. (** Any symmetric crelation is equal to its inverse. *) Lemma subrelation_symmetric R `(Symmetric R) : subrelation (flip R) R. Proof. hnf. intros x y H'. red in H'. apply symmetry. assumption. Qed. Section flip. Lemma flip_Reflexive `{Reflexive R} : Reflexive (flip R). Proof. tauto. Qed. Program Definition flip_Irreflexive `(Irreflexive R) : Irreflexive (flip R) := irreflexivity (R:=R). Program Definition flip_Symmetric `(Symmetric R) : Symmetric (flip R) := fun x y H => symmetry (R:=R) H. Program Definition flip_Asymmetric `(Asymmetric R) : Asymmetric (flip R) := fun x y H H' => asymmetry (R:=R) H H'. Program Definition flip_Transitive `(Transitive R) : Transitive (flip R) := fun x y z H H' => transitivity (R:=R) H' H. Program Definition flip_Antisymmetric `(Antisymmetric eqA R) : Antisymmetric eqA (flip R). Proof. firstorder. Qed. (** Inversing the larger structures *) Lemma flip_PreOrder `(PreOrder R) : PreOrder (flip R). Proof. firstorder. Qed. Lemma flip_StrictOrder `(StrictOrder R) : StrictOrder (flip R). Proof. firstorder. Qed. Lemma flip_PER `(PER R) : PER (flip R). Proof. firstorder. Qed. Lemma flip_Equivalence `(Equivalence R) : Equivalence (flip R). Proof. firstorder. Qed. End flip. Section complement. Definition complement_Irreflexive `(Reflexive R) : Irreflexive (complement R). Proof. firstorder. Qed. Definition complement_Symmetric `(Symmetric R) : Symmetric (complement R). Proof. firstorder. Qed. End complement. (** Rewrite crelation on a given support: declares a crelation as a rewrite crelation for use by the generalized rewriting tactic. It helps choosing if a rewrite should be handled by the generalized or the regular rewriting tactic using leibniz equality. Users can declare an [RewriteRelation A RA] anywhere to declare default crelations. This is also done automatically by the [Declare Relation A RA] commands. *) Class RewriteRelation (RA : crelation A). (** Any [Equivalence] declared in the context is automatically considered a rewrite crelation. *) Global Instance equivalence_rewrite_crelation `(Equivalence eqA) : RewriteRelation eqA. (** Leibniz equality. *) Section Leibniz. Global Instance eq_Reflexive : Reflexive (@eq A) := @eq_refl A. Global Instance eq_Symmetric : Symmetric (@eq A) := @eq_sym A. Global Instance eq_Transitive : Transitive (@eq A) := @eq_trans A. (** Leibinz equality [eq] is an equivalence crelation. The instance has low priority as it is always applicable if only the type is constrained. *) Global Program Instance eq_equivalence : Equivalence (@eq A) | 10. End Leibniz. End Defs. (** Default rewrite crelations handled by [setoid_rewrite]. *) Instance: RewriteRelation impl. Instance: RewriteRelation iff. (** Hints to drive the typeclass resolution avoiding loops due to the use of full unification. *) Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances. Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances. Hint Extern 3 (Irreflexive (complement _)) => class_apply complement_Irreflexive : typeclass_instances. Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances. Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances. Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances. Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances. Hint Extern 3 (Antisymmetric (flip _)) => class_apply flip_Antisymmetric : typeclass_instances. Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances. Hint Extern 3 (StrictOrder (flip _)) => class_apply flip_StrictOrder : typeclass_instances. Hint Extern 3 (PreOrder (flip _)) => class_apply flip_PreOrder : typeclass_instances. Hint Extern 4 (subrelation (flip _) _) => class_apply @subrelation_symmetric : typeclass_instances. Hint Resolve irreflexivity : ord. Unset Implicit Arguments. (** A HintDb for crelations. *) Ltac solve_crelation := match goal with | [ |- ?R ?x ?x ] => reflexivity | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H end. Hint Extern 4 => solve_crelation : crelations. (** We can already dualize all these properties. *) (** * Standard instances. *) Ltac reduce_hyp H := match type of H with | context [ _ <-> _ ] => fail 1 | _ => red in H ; try reduce_hyp H end. Ltac reduce_goal := match goal with | [ |- _ <-> _ ] => fail 1 | _ => red ; intros ; try reduce_goal end. Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid. Ltac reduce := reduce_goal. Tactic Notation "apply" "*" constr(t) := first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) | refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ]. Ltac simpl_crelation := unfold flip, impl, arrow ; try reduce ; program_simpl ; try ( solve [ dintuition ]). Local Obligation Tactic := simpl_crelation. (** Logical implication. *) Program Instance impl_Reflexive : Reflexive impl. Program Instance impl_Transitive : Transitive impl. (** Logical equivalence. *) Instance iff_Reflexive : Reflexive iff := iff_refl. Instance iff_Symmetric : Symmetric iff := iff_sym. Instance iff_Transitive : Transitive iff := iff_trans. (** Logical equivalence [iff] is an equivalence crelation. *) Program Instance iff_equivalence : Equivalence iff. Program Instance arrow_Reflexive : Reflexive arrow. Program Instance arrow_Transitive : Transitive arrow. Instance iffT_Reflexive : Reflexive iffT. Proof. firstorder. Defined. Instance iffT_Symmetric : Symmetric iffT. Proof. firstorder. Defined. Instance iffT_Transitive : Transitive iffT. Proof. firstorder. Defined. (** We now develop a generalization of results on crelations for arbitrary predicates. The resulting theory can be applied to homogeneous binary crelations but also to arbitrary n-ary predicates. *) Local Open Scope list_scope. (** A compact representation of non-dependent arities, with the codomain singled-out. *) (** We define the various operations which define the algebra on binary crelations *) Section Binary. Context {A : Type}. Definition relation_equivalence : crelation (crelation A) := fun R R' => forall x y, iffT (R x y) (R' x y). Global Instance: RewriteRelation relation_equivalence. Definition relation_conjunction (R : crelation A) (R' : crelation A) : crelation A := fun x y => prod (R x y) (R' x y). Definition relation_disjunction (R : crelation A) (R' : crelation A) : crelation A := fun x y => sum (R x y) (R' x y). (** Relation equivalence is an equivalence, and subrelation defines a partial order. *) Global Instance relation_equivalence_equivalence : Equivalence relation_equivalence. Proof. split; red; unfold relation_equivalence, iffT. firstorder. firstorder. intros. specialize (X x0 y0). specialize (X0 x0 y0). firstorder. Qed. Global Instance relation_implication_preorder : PreOrder (@subrelation A). Proof. firstorder. Qed. (** *** Partial Order. A partial order is a preorder which is additionally antisymmetric. We give an equivalent definition, up-to an equivalence crelation on the carrier. *) Class PartialOrder eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} := partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (flip R)). (** The equivalence proof is sufficient for proving that [R] must be a morphism for equivalence (see Morphisms). It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *) Global Instance partial_order_antisym `(PartialOrder eqA R) : ! Antisymmetric A eqA R. Proof with auto. reduce_goal. apply H. firstorder. Qed. Lemma PartialOrder_inverse `(PartialOrder eqA R) : PartialOrder eqA (flip R). Proof. unfold flip; constructor; unfold flip. intros. apply H. apply symmetry. apply X. unfold relation_conjunction. intros [H1 H2]. apply H. constructor; assumption. Qed. End Binary. Hint Extern 3 (PartialOrder (flip _)) => class_apply PartialOrder_inverse : typeclass_instances. (** The partial order defined by subrelation and crelation equivalence. *) (* Program Instance subrelation_partial_order : *) (* ! PartialOrder (crelation A) relation_equivalence subrelation. *) (* Obligation Tactic := idtac. *) (* Next Obligation. *) (* Proof. *) (* intros x. refine (fun x => x). *) (* Qed. *) Typeclasses Opaque relation_equivalence.