(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* A -> bool. Variable beq_refl : forall x:A, true = beq x x. Variable beq_eq : forall x y:A, true = beq x y -> x = y. Definition beq_eq_true : forall x y:A, x = y -> true = beq x y. Proof. intros x y H. case H. apply beq_refl. Defined. Definition beq_eq_not_false : forall x y:A, x = y -> false <> beq x y. Proof. intros x y e. rewrite <- beq_eq_true; trivial; discriminate. Defined. Definition beq_false_not_eq : forall x y:A, false = beq x y -> x <> y. Proof. exact (fun (x y:A) (H:false = beq x y) (e:x = y) => beq_eq_not_false x y e H). Defined. Definition exists_beq_eq : forall x y:A, {b : bool | b = beq x y}. Proof. intros. exists (beq x y). constructor. Defined. Definition not_eq_false_beq : forall x y:A, x <> y -> false = beq x y. Proof. intros x y H. symmetry . apply not_true_is_false. intro. apply H. apply beq_eq. symmetry . assumption. Defined. Definition eq_dec : forall x y:A, {x = y} + {x <> y}. Proof. intros x y; case (exists_beq_eq x y). intros b; case b; intro H. left; apply beq_eq; assumption. right; apply beq_false_not_eq; assumption. Defined. End Bool_eq_dec.