(* $Id$ *) (************) (* Booleans *) (************) (* Inductive bool : Set := true : bool | false : bool (from Prelude) *) Definition Is_true := [b:bool](Cases b of true => True | false => False end). Hints Unfold Is_true : bool. Lemma Is_true_eq_left : (x:bool)x=true -> (Is_true x). Proof. Intros; Rewrite H; Auto with bool. Save. Lemma Is_true_eq_right : (x:bool)true=x -> (Is_true x). Proof. Intros; Rewrite <- H; Auto with bool. Save. Hints Immediate Is_true_eq_right Is_true_eq_left : bool. (******************) (* Discrimination *) (******************) Lemma diff_true_false : ~true=false. Goal. Unfold not; Intro contr; Change (Is_true false). Elim contr; Simpl; Trivial with bool. Save. Hints Resolve diff_true_false : bool v62. Lemma diff_false_true : ~false=true. Goal. Red; Intros H; Apply diff_true_false. Symmetry. Assumption. Save. Hints Resolve diff_false_true : bool v62. Lemma eq_true_false_abs : (b:bool)(b=true)->(b=false)->False. Intros b H; Rewrite H; Auto with bool. Save. Hints Resolve eq_true_false_abs : bool. Lemma not_true_is_false : (b:bool)~b=true->b=false. Destruct b. Intros. Red in H; Elim H. Reflexivity. Intros abs. Reflexivity. Save. Lemma not_false_is_true : (b:bool)~b=false->b=true. Destruct b. Intros. Reflexivity. Intro H; Red in H; Elim H. Reflexivity. Save. (*********************) (* Order on booleans *) (*********************) Definition leb := [b1,b2:bool] Cases b1 of | true => b2=true | false => True end. Hints Unfold leb : bool v62. (************) (* Equality *) (************) Definition eqb : bool->bool->bool := [b1,b2:bool] Cases b1 b2 of true true => true | true false => false | false true => false | false false => true end. Lemma eqb_refl : (x:bool)(Is_true (eqb x x)). Destruct x; Simpl; Auto with bool. Save. Lemma eqb_eq : (x,y:bool)(Is_true (eqb x y))->x=y. Destruct x; Destruct y; Simpl; Tauto. Save. Lemma Is_true_eq_true : (x:bool) (Is_true x) -> x=true. Destruct x; Simpl; Tauto. Save. Lemma Is_true_eq_true2 : (x:bool) x=true -> (Is_true x). Destruct x; Simpl; Auto with bool. Save. Lemma eqb_subst : (P:bool->Prop)(b1,b2:bool)(eqb b1 b2)=true->(P b1)->(P b2). Unfold eqb . Intros P b1. Intros b2. Case b1. Case b2. Trivial with bool. Intros H. Inversion_clear H. Case b2. Intros H. Inversion_clear H. Trivial with bool. Save. Lemma eqb_reflx : (b:bool)(eqb b b)=true. Intro b. Case b. Trivial with bool. Trivial with bool. Save. Lemma eqb_prop : (a,b:bool)(eqb a b)=true -> a=b. Destruct a; Destruct b; Simpl; Intro; Discriminate H Orelse Reflexivity. Save. (***********************) (* Logical combinators *) (***********************) Definition ifb : bool -> bool -> bool -> bool := [b1,b2,b3:bool](Cases b1 of true => b2 | false => b3 end). Definition andb : bool -> bool -> bool := [b1,b2:bool](ifb b1 b2 false). Definition orb : bool -> bool -> bool := [b1,b2:bool](ifb b1 true b2). Definition implb : bool -> bool -> bool := [b1,b2:bool](ifb b1 b2 true). Definition xorb : bool -> bool -> bool := [b1,b2:bool] Cases b1 b2 of true true => false | true false => true | false true => true | false false => false end. Definition negb := [b:bool]Cases b of true => false | false => true end. (*************************) (* Lemmas about Negation *) (*************************) Lemma negb_intro : (b:bool)b=(negb (negb b)). Goal. Induction b; Reflexivity. Save. Lemma negb_elim : (b:bool)(negb (negb b))=b. Goal. Induction b; Reflexivity. Save. Lemma negb_orb : (b1,b2:bool) (negb (orb b1 b2)) = (andb (negb b1) (negb b2)). Proof. Destruct b1; Destruct b2; Simpl; Reflexivity. Qed. Lemma negb_andb : (b1,b2:bool) (negb (andb b1 b2)) = (orb (negb b1) (negb b2)). Proof. Destruct b1; Destruct b2; Simpl; Reflexivity. Qed. Lemma negb_sym : (b,b':bool)(b'=(negb b))->(b=(negb b')). Goal. Induction b; Induction b'; Intros; Simpl; Trivial with bool. Save. Lemma no_fixpoint_negb : (b:bool)~(negb b)=b. Goal. Induction b; Simpl; Unfold not; Intro; Apply diff_true_false; Auto with bool. Save. Lemma eqb_negb1 : (b:bool)(eqb (negb b) b)=false. Destruct b. Trivial with bool. Trivial with bool. Save. Lemma eqb_negb2 : (b:bool)(eqb b (negb b))=false. Destruct b. Trivial with bool. Trivial with bool. Save. (*************************) (* A few lemmas about Or *) (*************************) Lemma orb_prop : (a,b:bool)(orb a b)=true -> (a = true)\/(b = true). Induction a; Induction b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Save. Lemma orb_prop2 : (a,b:bool)(Is_true (orb a b)) -> (Is_true a)\/(Is_true b). Induction a; Induction b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Save. Lemma orb_true_intro : (b1,b2:bool)(b1=true)\/(b2=true)->(orb b1 b2)=true. Destruct b1; Auto with bool. Destruct 1; Intros. Elim diff_true_false; Auto with bool. Rewrite H0; Trivial with bool. Save. Hints Resolve orb_true_intro : bool v62. Lemma orb_b_true : (b:bool)(orb b true)=true. Auto with bool. Save. Hints Resolve orb_b_true : bool v62. Lemma orb_true_b : (b:bool)(orb true b)=true. Trivial with bool. Save. Lemma orb_true_elim : (b1,b2:bool)(orb b1 b2)=true -> {b1=true}+{b2=true}. Destruct b1; [Auto with bool | Destruct b2; Auto with bool]. Save. Lemma orb_false_intro : (b1,b2:bool)(b1=false)->(b2=false)->(orb b1 b2)=false. Intros b1 b2 H1 H2; Rewrite H1; Rewrite H2; Trivial with bool. Save. Hints Resolve orb_false_intro : bool v62. Lemma orb_b_false : (b:bool)(orb b false)=b. Proof. Destruct b; Trivial with bool. Save. Hints Resolve orb_b_false : bool v62. Lemma orb_false_b : (b:bool)(orb false b)=b. Proof. Destruct b; Trivial with bool. Save. Hints Resolve orb_false_b : bool v62. Lemma orb_false_elim : (b1,b2:bool)(orb b1 b2)=false -> (b1=false)/\(b2=false). Proof. Destruct b1. Intros; Elim diff_true_false; Auto with bool. Destruct b2. Intros; Elim diff_true_false; Auto with bool. Auto with bool. Save. Lemma orb_neg_b : (b:bool)(orb b (negb b))=true. Proof. Destruct b; Reflexivity. Save. Hints Resolve orb_neg_b : bool v62. Lemma orb_sym : (b1,b2:bool)(orb b1 b2)=(orb b2 b1). Destruct b1; Destruct b2; Reflexivity. Save. Lemma orb_assoc : (b1,b2,b3:bool)(orb b1 (orb b2 b3))=(orb (orb b1 b2) b3). Proof. Destruct b1; Destruct b2; Destruct b3; Reflexivity. Save. Hints Resolve orb_sym orb_assoc orb_b_false orb_false_b : bool v62. (**************************) (* A few lemmas about And *) (**************************) Lemma andb_prop : (a,b:bool)(andb a b) = true -> (a = true)/\(b = true). Proof. Induction a; Induction b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Save. Hints Resolve andb_prop : bool v62. Lemma andb_prop2 : (a,b:bool)(Is_true (andb a b)) -> (Is_true a)/\(Is_true b). Proof. Induction a; Induction b; Simpl; Try (Intro H;Discriminate H); Auto with bool. Save. Hints Resolve andb_prop2 : bool v62. Lemma andb_true_intro : (b1,b2:bool)(b1=true)/\(b2=true)->(andb b1 b2)=true. Proof. Destruct b1; Destruct b2; Simpl; Tauto Orelse Auto with bool. Save. Hints Resolve andb_true_intro : bool v62. Lemma andb_true_intro2 : (b1,b2:bool)(Is_true b1)->(Is_true b2)->(Is_true (andb b1 b2)). Proof. Destruct b1; Destruct b2; Tauto. Save. Hints Resolve andb_true_intro2 : bool v62. Lemma andb_false_intro1 : (b1,b2:bool)(b1=false)->(andb b1 b2)=false. Destruct b1; Destruct b2; Simpl; Tauto Orelse Auto with bool. Save. Lemma andb_false_intro2 : (b1,b2:bool)(b2=false)->(andb b1 b2)=false. Destruct b1; Destruct b2; Simpl; Tauto Orelse Auto with bool. Save. Lemma andb_b_false : (b:bool)(andb b false)=false. Destruct b; Auto with bool. Save. Lemma andb_false_b : (b:bool)(andb false b)=false. Trivial with bool. Save. Lemma andb_b_true : (b:bool)(andb b true)=b. Destruct b; Auto with bool. Save. Lemma andb_true_b : (b:bool)(andb true b)=b. Trivial with bool. Save. Lemma andb_false_elim : (b1,b2:bool)(andb b1 b2)=false -> {b1=false}+{b2=false}. Destruct b1; Destruct b2; Simpl; Auto with bool. Save. Hints Resolve andb_false_elim : bool v62. Lemma andb_neg_b : (b:bool)(andb b (negb b))=false. Destruct b; Reflexivity. Save. Hints Resolve andb_neg_b : bool v62. Lemma andb_sym : (b1,b2:bool)(andb b1 b2)=(andb b2 b1). Destruct b1; Destruct b2; Reflexivity. Save. Lemma andb_assoc : (b1,b2,b3:bool)(andb b1 (andb b2 b3))=(andb (andb b1 b2) b3). Destruct b1; Destruct b2; Destruct b3; Reflexivity. Save. Hints Resolve andb_sym andb_assoc : bool v62. (*******************************) (* De Morgan's law *) (*******************************) Lemma demorgan1 : (b1,b2,b3:bool) (andb b1 (orb b2 b3)) = (orb (andb b1 b2) (andb b1 b3)). Destruct b1; Destruct b2; Destruct b3; Reflexivity. Save. Lemma demorgan2 : (b1,b2,b3:bool) (andb (orb b1 b2) b3) = (orb (andb b1 b3) (andb b2 b3)). Destruct b1; Destruct b2; Destruct b3; Reflexivity. Save. Lemma demorgan3 : (b1,b2,b3:bool) (orb b1 (andb b2 b3)) = (andb (orb b1 b2) (orb b1 b3)). Destruct b1; Destruct b2; Destruct b3; Reflexivity. Save. Lemma demorgan4 : (b1,b2,b3:bool) (orb (andb b1 b2) b3) = (andb (orb b1 b3) (orb b2 b3)). Destruct b1; Destruct b2; Destruct b3; Reflexivity. Save. Lemma absoption_andb : (b1,b2:bool) (andb b1 (orb b1 b2)) = b1. Proof. Destruct b1; Destruct b2; Simpl; Reflexivity. Qed. Lemma absoption_orb : (b1,b2:bool) (orb b1 (andb b1 b2)) = b1. Proof. Destruct b1; Destruct b2; Simpl; Reflexivity. Qed.