(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* nat. Definition ltof := [a,b:A](lt (f a) (f b)). Definition gtof := [a,b:A](gt (f b) (f a)). Theorem well_founded_ltof : (well_founded A ltof). Proof. Red. Cut (n:nat)(a:A)(lt (f a) n)->(Acc A ltof a). Intros H a; Apply (H (S (f a))); Auto with arith. Induction n. Intros; Absurd (lt (f a) O); Auto with arith. Intros m Hm a ltSma. Apply Acc_intro. Unfold ltof; Intros b ltfafb. Apply Hm. Apply lt_le_trans with (f a); Auto with arith. Qed. Theorem well_founded_gtof : (well_founded A gtof). Proof well_founded_ltof. (* It is possible to directly prove the induction principle going back to primitive recursion on natural numbers ([induction_ltof1]) or to use the previous lemmas to extract a program with a fixpoint ([induction_ltof2]) the ML-like program for [induction_ltof1] is : \begin{verbatim} let induction_ltof1 F a = indrec ((f a)+1) a where rec indrec = function 0 -> (function a -> error) |(S m) -> (function a -> (F a (function y -> indrec y m)));; \end{verbatim} the ML-like program for [induction_ltof2] is : \begin{verbatim} let induction_ltof2 F a = indrec a where rec indrec a = F a indrec;; \end{verbatim} *) Theorem induction_ltof1 : (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a). Proof. Intros P F; Cut (n:nat)(a:A)(lt (f a) n)->(P a). Intros H a; Apply (H (S (f a))); Auto with arith. Induction n. Intros; Absurd (lt (f a) O); Auto with arith. Intros m Hm a ltSma. Apply F. Unfold ltof; Intros b ltfafb. Apply Hm. Apply lt_le_trans with (f a); Auto with arith. Qed. Theorem induction_gtof1 : (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a). Proof induction_ltof1. Theorem induction_ltof2 : (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a). Proof (well_founded_induction A ltof well_founded_ltof). Theorem induction_gtof2 : (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a). Proof induction_ltof2. (* If a relation R is compatible with lt i.e. if x R y => f(x) < f(y) then R is well-founded. *) Variable R : A->A->Prop. Hypothesis H_compat : (x,y:A) (R x y) -> (lt (f x) (f y)). Theorem well_founded_lt_compat : (well_founded A R). Proof. Red. Cut (n:nat)(a:A)(lt (f a) n)->(Acc A R a). Intros H a; Apply (H (S (f a))); Auto with arith. Induction n. Intros; Absurd (lt (f a) O); Auto with arith. Intros m Hm a ltSma. Apply Acc_intro. Intros b ltfafb. Apply Hm. Apply lt_le_trans with (f a); Auto with arith. Save. End Well_founded_Nat. Lemma lt_wf : (well_founded nat lt). Proof (well_founded_ltof nat [m:nat]m). Lemma lt_wf_rec1 : (p:nat)(P:nat->Set) ((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p). Proof [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)] (induction_ltof1 nat [m:nat]m P F p). Lemma lt_wf_rec : (p:nat)(P:nat->Set) ((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p). Proof [p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)] (induction_ltof2 nat [m:nat]m P F p). Lemma lt_wf_ind : (p:nat)(P:nat->Prop) ((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p). Intros; Elim (lt_wf p); Auto with arith. Save. Lemma gt_wf_rec : (p:nat)(P:nat->Set) ((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p). Proof lt_wf_rec. Lemma gt_wf_ind : (p:nat)(P:nat->Prop) ((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p). Proof lt_wf_ind. Lemma lt_wf_double_rec : (P:nat->nat->Set) ((n,m:nat)((p,q:nat)(lt p n)->(P p q))->((p:nat)(lt p m)->(P n p))->(P n m)) -> (p,q:nat)(P p q). Intros P Hrec p; Pattern p; Apply lt_wf_rec. Intros; Pattern q; Apply lt_wf_rec; Auto with arith. Save. Lemma lt_wf_double_ind : (P:nat->nat->Prop) ((n,m:nat)((p,q:nat)(lt p n)->(P p q))->((p:nat)(lt p m)->(P n p))->(P n m)) -> (p,q:nat)(P p q). Intros P Hrec p; Pattern p; Apply lt_wf_ind. Intros; Pattern q; Apply lt_wf_ind; Auto with arith. Save. Hints Resolve lt_wf : arith. Hints Resolve well_founded_lt_compat : arith.