(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* eq) S. Program Instance pred_wd : Proper (eq==>eq) pred. Program Instance add_wd : Proper (eq==>eq==>eq) plus. Program Instance sub_wd : Proper (eq==>eq==>eq) minus. Program Instance mul_wd : Proper (eq==>eq==>eq) mult. Program Instance pow_wd : Proper (eq==>eq==>eq) pow. Program Instance div_wd : Proper (eq==>eq==>eq) div. Program Instance mod_wd : Proper (eq==>eq==>eq) modulo. Program Instance lt_wd : Proper (eq==>eq==>iff) lt. Program Instance testbit_wd : Proper (eq==>eq==>eq) testbit. (** Bi-directional induction. *) Theorem bi_induction : forall A : nat -> Prop, Proper (eq==>iff) A -> A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n. Proof. intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS. Qed. (** Recursion fonction *) Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A := nat_rect (fun _ => A). Instance recursion_wd {A} (Aeq : relation A) : Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion. Proof. intros a a' Ha f f' Hf n n' Hn. subst n'. induction n; simpl; auto. apply Hf; auto. Qed. Theorem recursion_0 : forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a. Proof. reflexivity. Qed. Theorem recursion_succ : forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A), Aeq a a -> Proper (eq==>Aeq==>Aeq) f -> forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)). Proof. unfold Proper, respectful in *; induction n; simpl; auto. Qed. (** ** Remaining constants not defined in Coq.Init.Nat *) (** NB: Aliasing [le] is mandatory, since only a Definition can implement an interface Parameter... *) Definition eq := @Logic.eq nat. Definition le := Peano.le. Definition lt := Peano.lt. (** ** Basic specifications : pred add sub mul *) Lemma pred_succ n : pred (S n) = n. Proof. reflexivity. Qed. Lemma pred_0 : pred 0 = 0. Proof. reflexivity. Qed. Lemma one_succ : 1 = S 0. Proof. reflexivity. Qed. Lemma two_succ : 2 = S 1. Proof. reflexivity. Qed. Lemma add_0_l n : 0 + n = n. Proof. reflexivity. Qed. Lemma add_succ_l n m : (S n) + m = S (n + m). Proof. reflexivity. Qed. Lemma sub_0_r n : n - 0 = n. Proof. now destruct n. Qed. Lemma sub_succ_r n m : n - (S m) = pred (n - m). Proof. revert m. induction n; destruct m; simpl; auto. apply sub_0_r. Qed. Lemma mul_0_l n : 0 * n = 0. Proof. reflexivity. Qed. Lemma mul_succ_l n m : S n * m = n * m + m. Proof. assert (succ_r : forall x y, x+S y = S(x+y)) by now induction x. assert (comm : forall x y, x+y = y+x). { induction x; simpl; auto. intros; rewrite succ_r; now f_equal. } now rewrite comm. Qed. Lemma lt_succ_r n m : n < S m <-> n <= m. Proof. split. apply Peano.le_S_n. induction 1; auto. Qed. (** ** Boolean comparisons *) Lemma eqb_eq n m : eqb n m = true <-> n = m. Proof. revert m. induction n; destruct m; simpl; rewrite ?IHn; split; try easy. - now intros ->. - now injection 1. Qed. Lemma leb_le n m : (n <=? m) = true <-> n <= m. Proof. revert m. induction n; destruct m; simpl. - now split. - split; trivial. intros; apply Peano.le_0_n. - now split. - rewrite IHn; split. + apply Peano.le_n_S. + apply Peano.le_S_n. Qed. Lemma ltb_lt n m : (n n < m. Proof. apply leb_le. Qed. (** ** Decidability of equality over [nat]. *) Lemma eq_dec : forall n m : nat, {n = m} + {n <> m}. Proof. induction n; destruct m. - now left. - now right. - now right. - destruct (IHn m); [left|right]; auto. Defined. (** ** Ternary comparison *) (** With [nat], it would be easier to prove first [compare_spec], then the properties below. But then we wouldn't be able to benefit from functor [BoolOrderFacts] *) Lemma compare_eq_iff n m : (n ?= m) = Eq <-> n = m. Proof. revert m; induction n; destruct m; simpl; rewrite ?IHn; split; auto; easy. Qed. Lemma compare_lt_iff n m : (n ?= m) = Lt <-> n < m. Proof. revert m; induction n; destruct m; simpl; rewrite ?IHn; split; try easy. - intros _. apply Peano.le_n_S, Peano.le_0_n. - apply Peano.le_n_S. - apply Peano.le_S_n. Qed. Lemma compare_le_iff n m : (n ?= m) <> Gt <-> n <= m. Proof. revert m; induction n; destruct m; simpl; rewrite ?IHn. - now split. - split; intros. apply Peano.le_0_n. easy. - split. now destruct 1. inversion 1. - split; intros. now apply Peano.le_n_S. now apply Peano.le_S_n. Qed. Lemma compare_antisym n m : (m ?= n) = CompOpp (n ?= m). Proof. revert m; induction n; destruct m; simpl; trivial. Qed. Lemma compare_succ n m : (S n ?= S m) = (n ?= m). Proof. reflexivity. Qed. (* BUG: Ajout d'un cas * après preuve finie (deuxième niveau +++*** ) : * ---> Anomaly: Uncaught exception Proofview.IndexOutOfRange(_). Please report. *) (** ** Minimum, maximum *) Lemma max_l : forall n m, m <= n -> max n m = n. Proof. exact Peano.max_l. Qed. Lemma max_r : forall n m, n <= m -> max n m = m. Proof. exact Peano.max_r. Qed. Lemma min_l : forall n m, n <= m -> min n m = n. Proof. exact Peano.min_l. Qed. Lemma min_r : forall n m, m <= n -> min n m = m. Proof. exact Peano.min_r. Qed. (** Some more advanced properties of comparison and orders, including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *) Include BoolOrderFacts. (** We can now derive all properties of basic functions and orders, and use these properties for proving the specs of more advanced functions. *) Include NBasicProp <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties. (** ** Power *) Lemma pow_neg_r a b : b<0 -> a^b = 0. inversion 1. Qed. Lemma pow_0_r a : a^0 = 1. Proof. reflexivity. Qed. Lemma pow_succ_r a b : 0<=b -> a^(S b) = a * a^b. Proof. reflexivity. Qed. (** ** Square *) Lemma square_spec n : square n = n * n. Proof. reflexivity. Qed. (** ** Parity *) Definition Even n := exists m, n = 2*m. Definition Odd n := exists m, n = 2*m+1. Module Private_Parity. Lemma Even_1 : ~ Even 1. Proof. intros ([|], H); try discriminate. simpl in H. now rewrite <- plus_n_Sm in H. Qed. Lemma Even_2 n : Even n <-> Even (S (S n)). Proof. split; intros (m,H). - exists (S m). rewrite H. simpl. now rewrite plus_n_Sm. - destruct m; try discriminate. exists m. simpl in H. rewrite <- plus_n_Sm in H. now inversion H. Qed. Lemma Odd_0 : ~ Odd 0. Proof. now intros ([|], H). Qed. Lemma Odd_2 n : Odd n <-> Odd (S (S n)). Proof. split; intros (m,H). - exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m). - destruct m; try discriminate. exists m. simpl in H. rewrite <- plus_n_Sm in H. inversion H. simpl. now rewrite <- !plus_n_Sm, <- !plus_n_O. Qed. End Private_Parity. Import Private_Parity. Lemma even_spec : forall n, even n = true <-> Even n. Proof. fix even_spec 1. destruct n as [|[|n]]; simpl. - split; [ now exists 0 | trivial ]. - split; [ discriminate | intro H; elim (Even_1 H) ]. - rewrite even_spec. apply Even_2. Qed. Lemma odd_spec : forall n, odd n = true <-> Odd n. Proof. unfold odd. fix odd_spec 1. destruct n as [|[|n]]; simpl. - split; [ discriminate | intro H; elim (Odd_0 H) ]. - split; [ now exists 0 | trivial ]. - rewrite odd_spec. apply Odd_2. Qed. (** ** Division *) Lemma divmod_spec : forall x y q u, u <= y -> let (q',u') := divmod x y q u in x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y. Proof. induction x. - simpl; intuition. - intros y q u H. destruct u; simpl divmod. + generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u'). intros (EQ,LE); split; trivial. rewrite <- EQ, sub_0_r, sub_diag, add_0_r. now rewrite !add_succ_l, <- add_succ_r, <- add_assoc, mul_succ_r. + assert (H' : u <= y). { apply le_trans with (S u); trivial. do 2 constructor. } generalize (IHx y q u H'). destruct divmod as (q',u'). intros (EQ,LE); split; trivial. rewrite <- EQ. rewrite !add_succ_l, <- add_succ_r. f_equal. now rewrite <- sub_succ_l. Qed. Lemma div_mod x y : y<>0 -> x = y*(x/y) + x mod y. Proof. intros Hy. destruct y; [ now elim Hy | clear Hy ]. unfold div, modulo. generalize (divmod_spec x y 0 y (le_n y)). destruct divmod as (q,u). intros (U,V). simpl in *. now rewrite mul_0_r, sub_diag, !add_0_r in U. Qed. Lemma mod_bound_pos x y : 0<=x -> 0 0 <= x mod y < y. Proof. intros Hx Hy. split. apply le_0_l. destruct y; [ now elim Hy | clear Hy ]. unfold modulo. apply lt_succ_r, le_sub_l. Qed. (** ** Square root *) Lemma sqrt_iter_spec : forall k p q r, q = p+p -> r<=q -> let s := sqrt_iter k p q r in s*s <= k + p*p + (q - r) < (S s)*(S s). Proof. induction k. - (* k = 0 *) simpl; intros p q r Hq Hr. split. + apply le_add_r. + apply lt_succ_r. rewrite mul_succ_r. rewrite add_assoc, (add_comm p), <- add_assoc. apply add_le_mono_l. rewrite <- Hq. apply le_sub_l. - (* k = S k' *) destruct r. + (* r = 0 *) intros Hq _. replace (S k + p*p + (q-0)) with (k + (S p)*(S p) + (S (S q) - S (S q))). * apply IHk. simpl. now rewrite add_succ_r, Hq. apply le_n. * rewrite sub_diag, sub_0_r, add_0_r. simpl. rewrite add_succ_r; f_equal. rewrite <- add_assoc; f_equal. rewrite mul_succ_r, (add_comm p), <- add_assoc. now f_equal. + (* r = S r' *) intros Hq Hr. replace (S k + p*p + (q-S r)) with (k + p*p + (q - r)). * apply IHk; trivial. apply le_trans with (S r); trivial. do 2 constructor. * simpl. rewrite <- add_succ_r. f_equal. rewrite <- sub_succ_l; trivial. Qed. Lemma sqrt_specif n : (sqrt n)*(sqrt n) <= n < S (sqrt n) * S (sqrt n). Proof. set (s:=sqrt n). replace n with (n + 0*0 + (0-0)). apply sqrt_iter_spec; auto. simpl. now rewrite !add_0_r. Qed. Definition sqrt_spec a (Ha:0<=a) := sqrt_specif a. Lemma sqrt_neg a : a<0 -> sqrt a = 0. Proof. inversion 1. Qed. (** ** Logarithm *) Lemma log2_iter_spec : forall k p q r, 2^(S p) = q + S r -> r < 2^p -> let s := log2_iter k p q r in 2^s <= k + q < 2^(S s). Proof. induction k. - (* k = 0 *) intros p q r EQ LT. simpl log2_iter. cbv zeta. split. + rewrite add_0_l. rewrite (add_le_mono_l _ _ (2^p)). simpl pow in EQ. rewrite add_0_r in EQ. rewrite EQ. rewrite add_comm. apply add_le_mono_r. apply LT. + rewrite EQ, add_comm. apply add_lt_mono_l. apply lt_succ_r, le_0_l. - (* k = S k' *) intros p q r EQ LT. destruct r. + (* r = 0 *) rewrite add_succ_r, add_0_r in EQ. rewrite add_succ_l, <- add_succ_r. apply IHk. * rewrite <- EQ. remember (S p) as p'; simpl. now rewrite add_0_r. * rewrite EQ. constructor. + (* r = S r' *) rewrite add_succ_l, <- add_succ_r. apply IHk. * now rewrite add_succ_l, <- add_succ_r. * apply le_lt_trans with (S r); trivial. do 2 constructor. Qed. Lemma log2_spec n : 0 2^(log2 n) <= n < 2^(S (log2 n)). Proof. intros. set (s:=log2 n). replace n with (pred n + 1). apply log2_iter_spec; auto. rewrite add_1_r. apply succ_pred. now apply neq_sym, lt_neq. Qed. Lemma log2_nonpos n : n<=0 -> log2 n = 0. Proof. inversion 1; now subst. Qed. (** ** Gcd *) Definition divide x y := exists z, y=z*x. Notation "( x | y )" := (divide x y) (at level 0) : nat_scope. Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b). Proof. fix gcd_divide 1. intros [|a] b; simpl. split. now exists 0. exists 1. simpl. now rewrite <- plus_n_O. fold (b mod (S a)). destruct (gcd_divide (b mod (S a)) (S a)) as (H,H'). set (a':=S a) in *. split; auto. rewrite (div_mod b a') at 2 by discriminate. destruct H as (u,Hu), H' as (v,Hv). rewrite mul_comm. exists ((b/a')*v + u). rewrite mul_add_distr_r. now rewrite <- mul_assoc, <- Hv, <- Hu. Qed. Lemma gcd_divide_l : forall a b, (gcd a b | a). Proof. intros. apply gcd_divide. Qed. Lemma gcd_divide_r : forall a b, (gcd a b | b). Proof. intros. apply gcd_divide. Qed. Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b). Proof. fix gcd_greatest 1. intros [|a] b; simpl; auto. fold (b mod (S a)). intros c H H'. apply gcd_greatest; auto. set (a':=S a) in *. rewrite (div_mod b a') in H' by discriminate. destruct H as (u,Hu), H' as (v,Hv). exists (v - (b/a')*u). rewrite mul_comm in Hv. rewrite mul_sub_distr_r, <- Hv, <- mul_assoc, <-Hu. now rewrite add_comm, add_sub. Qed. Lemma gcd_nonneg a b : 0<=gcd a b. Proof. apply le_0_l. Qed. (** ** Bitwise operations *) Lemma div2_double n : div2 (2*n) = n. Proof. induction n; trivial. simpl mul. rewrite add_succ_r. simpl. now f_equal. Qed. Lemma div2_succ_double n : div2 (S (2*n)) = n. Proof. induction n; trivial. simpl. f_equal. now rewrite add_succ_r. Qed. Lemma le_div2 n : div2 (S n) <= n. Proof. revert n. fix le_div2 1. destruct n; simpl; trivial. apply lt_succ_r. destruct n; [simpl|]; trivial. now constructor. Qed. Lemma lt_div2 n : 0 < n -> div2 n < n. Proof. destruct n. - inversion 1. - intros _. apply lt_succ_r, le_div2. Qed. Lemma div2_decr a n : a <= S n -> div2 a <= n. Proof. destruct a; intros H. - simpl. apply le_0_l. - apply succ_le_mono in H. apply le_trans with a; [ apply le_div2 | trivial ]. Qed. Lemma double_twice : forall n, double n = 2*n. Proof. simpl; intros. now rewrite add_0_r. Qed. Lemma testbit_0_l : forall n, testbit 0 n = false. Proof. now induction n. Qed. Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true. Proof. unfold testbit. rewrite odd_spec. now exists a. Qed. Lemma testbit_even_0 a : testbit (2*a) 0 = false. Proof. unfold testbit, odd. rewrite (proj2 (even_spec _)); trivial. now exists a. Qed. Lemma testbit_odd_succ' a n : testbit (2*a+1) (S n) = testbit a n. Proof. unfold testbit; fold testbit. rewrite add_1_r. f_equal. apply div2_succ_double. Qed. Lemma testbit_even_succ' a n : testbit (2*a) (S n) = testbit a n. Proof. unfold testbit; fold testbit. f_equal. apply div2_double. Qed. Lemma shiftr_specif : forall a n m, testbit (shiftr a n) m = testbit a (m+n). Proof. induction n; intros m. trivial. now rewrite add_0_r. now rewrite add_succ_r, <- add_succ_l, <- IHn. Qed. Lemma shiftl_specif_high : forall a n m, n<=m -> testbit (shiftl a n) m = testbit a (m-n). Proof. induction n; intros m H. trivial. now rewrite sub_0_r. destruct m. inversion H. simpl. apply succ_le_mono in H. change (shiftl a (S n)) with (double (shiftl a n)). rewrite double_twice, div2_double. now apply IHn. Qed. Lemma shiftl_spec_low : forall a n m, m testbit (shiftl a n) m = false. Proof. induction n; intros m H. inversion H. change (shiftl a (S n)) with (double (shiftl a n)). destruct m; simpl. unfold odd. apply negb_false_iff. apply even_spec. exists (shiftl a n). apply double_twice. rewrite double_twice, div2_double. apply IHn. now apply succ_le_mono. Qed. Lemma div2_bitwise : forall op n a b, div2 (bitwise op (S n) a b) = bitwise op n (div2 a) (div2 b). Proof. intros. unfold bitwise; fold bitwise. destruct (op (odd a) (odd b)). now rewrite div2_succ_double. now rewrite add_0_l, div2_double. Qed. Lemma odd_bitwise : forall op n a b, odd (bitwise op (S n) a b) = op (odd a) (odd b). Proof. intros. unfold bitwise; fold bitwise. destruct (op (odd a) (odd b)). apply odd_spec. rewrite add_comm. eexists; eauto. unfold odd. apply negb_false_iff. apply even_spec. rewrite add_0_l; eexists; eauto. Qed. Lemma testbit_bitwise_1 : forall op, (forall b, op false b = false) -> forall n m a b, a<=n -> testbit (bitwise op n a b) m = op (testbit a m) (testbit b m). Proof. intros op Hop. induction n; intros m a b Ha. simpl. inversion Ha; subst. now rewrite testbit_0_l. destruct m. apply odd_bitwise. unfold testbit; fold testbit. rewrite div2_bitwise. apply IHn. now apply div2_decr. Qed. Lemma testbit_bitwise_2 : forall op, op false false = false -> forall n m a b, a<=n -> b<=n -> testbit (bitwise op n a b) m = op (testbit a m) (testbit b m). Proof. intros op Hop. induction n; intros m a b Ha Hb. simpl. inversion Ha; inversion Hb; subst. now rewrite testbit_0_l. destruct m. apply odd_bitwise. unfold testbit; fold testbit. rewrite div2_bitwise. apply IHn; now apply div2_decr. Qed. Lemma land_spec a b n : testbit (land a b) n = testbit a n && testbit b n. Proof. unfold land. apply testbit_bitwise_1; trivial. Qed. Lemma ldiff_spec a b n : testbit (ldiff a b) n = testbit a n && negb (testbit b n). Proof. unfold ldiff. apply testbit_bitwise_1; trivial. Qed. Lemma lor_spec a b n : testbit (lor a b) n = testbit a n || testbit b n. Proof. unfold lor. apply testbit_bitwise_2. - trivial. - destruct (compare_spec a b). + rewrite max_l; subst; trivial. + apply lt_le_incl in H. now rewrite max_r. + apply lt_le_incl in H. now rewrite max_l. - destruct (compare_spec a b). + rewrite max_r; subst; trivial. + apply lt_le_incl in H. now rewrite max_r. + apply lt_le_incl in H. now rewrite max_l. Qed. Lemma lxor_spec a b n : testbit (lxor a b) n = xorb (testbit a n) (testbit b n). Proof. unfold lxor. apply testbit_bitwise_2. - trivial. - destruct (compare_spec a b). + rewrite max_l; subst; trivial. + apply lt_le_incl in H. now rewrite max_r. + apply lt_le_incl in H. now rewrite max_l. - destruct (compare_spec a b). + rewrite max_r; subst; trivial. + apply lt_le_incl in H. now rewrite max_r. + apply lt_le_incl in H. now rewrite max_l. Qed. Lemma div2_spec a : div2 a = shiftr a 1. Proof. reflexivity. Qed. (** Aliases with extra dummy hypothesis, to fulfil the interface *) Definition testbit_odd_succ a n (_:0<=n) := testbit_odd_succ' a n. Definition testbit_even_succ a n (_:0<=n) := testbit_even_succ' a n. Lemma testbit_neg_r a n (H:n<0) : testbit a n = false. Proof. inversion H. Qed. Definition shiftl_spec_high a n m (_:0<=m) := shiftl_specif_high a n m. Definition shiftr_spec a n m (_:0<=m) := shiftr_specif a n m. (** Properties of advanced functions (pow, sqrt, log2, ...) *) Include NExtraProp. (** Properties of tail-recursive addition and multiplication *) Lemma tail_add_spec n m : tail_add n m = n + m. Proof. revert m. induction n as [|n IH]; simpl; trivial. intros. now rewrite IH, add_succ_r. Qed. Lemma tail_addmul_spec r n m : tail_addmul r n m = r + n * m. Proof. revert m r. induction n as [| n IH]; simpl; trivial. intros. rewrite IH, tail_add_spec. rewrite add_assoc. f_equal. apply add_comm. Qed. Lemma tail_mul_spec n m : tail_mul n m = n * m. Proof. unfold tail_mul. now rewrite tail_addmul_spec. Qed. End Nat. (** Re-export notations that should be available even when the [Nat] module is not imported. *) Bind Scope nat_scope with Nat.t nat. Infix "^" := Nat.pow : nat_scope. Infix "=?" := Nat.eqb (at level 70) : nat_scope. Infix "<=?" := Nat.leb (at level 70) : nat_scope. Infix " y<=x -> x=y]. *) Section TestOrder. Let test : forall x y, x<=y -> y<=x -> x=y. Proof. Nat.order. Qed. End TestOrder.