(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (le (mult m n) (mult m p)). Proof. NewInduction m. Intros. Simpl. Apply le_n. Intros. Simpl. Apply le_plus_plus. Assumption. Apply IHm. Assumption. Qed. Hints Resolve mult_le : arith. Lemma mult_lt : (m,n,p:nat) (lt n p) -> (lt (mult (S m) n) (mult (S m) p)). Proof. NewInduction m. Intros. Simpl. Rewrite <- plus_n_O. Rewrite <- plus_n_O. Assumption. Intros. Exact (lt_plus_plus ? ? ? ? H (IHm ? ? H)). Qed. Hints Resolve mult_lt : arith. Lemma mult_le_conv_1 : (m,n,p:nat) (le (mult (S m) n) (mult (S m) p)) -> (le n p). Proof. Intros. Elim (le_or_lt n p). Trivial. Intro H0. Cut (lt (mult (S m) n) (mult (S m) n)). Intro. Elim (lt_n_n ? H1). Apply le_lt_trans with m:=(mult (S m) p). Assumption. Apply mult_lt. Assumption. Qed. (** Tail-recursive mult *) (** [tail_mult] is an alternative definition for [mult] which is tail-recursive, whereas [mult] is not. This can be useful when extracting programs. *) Fixpoint mult_acc [s,m,n:nat] : nat := Cases n of O => s | (S p) => (mult_acc (tail_plus m s) m p) end. Lemma mult_acc_aux : (n,s,m:nat)(plus s (mult n m))= (mult_acc s m n). Proof. Induction n; Simpl;Auto. Intros p H s m; Rewrite <- plus_tail_plus; Rewrite <- H. Rewrite <- plus_assoc_r; Apply (f_equal2 nat nat);Auto. Rewrite plus_sym;Auto. Qed. Definition tail_mult := [n,m:nat](mult_acc O m n). Lemma mult_tail_mult : (n,m:nat)(mult n m)=(tail_mult n m). Proof. Intros; Unfold tail_mult; Rewrite <- mult_acc_aux;Auto. Qed. (** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus] and [mult] and simplify *) Tactic Definition TailSimpl := Repeat Rewrite <- plus_tail_plus; Repeat Rewrite <- mult_tail_mult; Simpl.