(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* m | S n', O => n | S n', S m' => S (max n' m') end. Fixpoint min n m : nat := match n, m with | O, _ => 0 | S n', O => 0 | S n', S m' => S (min n' m') end. (** These functions implement indeed a maximum and a minimum *) Lemma max_spec : forall x y, (x Type), (m<=n -> P n) -> (n<=m -> P m) -> P (max n m). Proof. intros; apply max_case_strong; auto. congruence. Defined. Lemma max_case : forall n m (P:nat -> Type), P n -> P m -> P (max n m). Proof. intros. apply max_case_strong; auto. Defined. Lemma max_monotone: forall f, (Proper (le ==> le) f) -> forall x y, max (f x) (f y) = f (max x y). Proof. intros; apply max_monotone; auto. congruence. Qed. Lemma min_case_strong : forall n m (P:nat -> Type), (m<=n -> P m) -> (n<=m -> P n) -> P (min n m). Proof. intros; apply min_case_strong; auto. congruence. Defined. Lemma min_case : forall n m (P:nat -> Type), P n -> P m -> P (min n m). Proof. intros. apply min_case_strong; auto. Defined. Lemma min_monotone: forall f, (Proper (le ==> le) f) -> forall x y, min (f x) (f y) = f (min x y). Proof. intros; apply min_monotone; auto. congruence. Qed. Lemma max_min_antimonotone : forall f, Proper (le==>ge) f -> forall x y, max (f x) (f y) == f (min x y). Proof. intros. apply max_min_antimonotone. congruence. intros z z' Hz; red; unfold ge in *; auto. Qed. Lemma min_max_antimonotone : forall f, Proper (le==>ge) f -> forall x y, min (f x) (f y) == f (max x y). Proof. intros. apply min_max_antimonotone. congruence. intros z z' Hz; red; unfold ge in *; auto. Qed. (** For the other generic properties, we make aliases, since otherwise SearchAbout misses some of them (bad interaction with an Include). See GenericMinMax (or SearchAbout) for the statements. *) Definition max_spec_le := max_spec_le. Definition max_dec := max_dec. Definition max_unicity := max_unicity. Definition max_unicity_ext := max_unicity_ext. Definition max_id := max_id. Notation max_idempotent := max_id (only parsing). Definition max_assoc := max_assoc. Definition max_comm := max_comm. Definition max_l := max_l. Definition max_r := max_r. Definition le_max_l := le_max_l. Definition le_max_r := le_max_r. Definition max_le := max_le. Definition max_le_iff := max_le_iff. Definition max_lt_iff := max_lt_iff. Definition max_lub_l := max_lub_l. Definition max_lub_r := max_lub_r. Definition max_lub := max_lub. Definition max_lub_iff := max_lub_iff. Definition max_lub_lt := max_lub_lt. Definition max_lub_lt_iff := max_lub_lt_iff. Definition max_le_compat_l := max_le_compat_l. Definition max_le_compat_r := max_le_compat_r. Definition max_le_compat := max_le_compat. Definition min_spec_le := min_spec_le. Definition min_dec := min_dec. Definition min_unicity := min_unicity. Definition min_unicity_ext := min_unicity_ext. Definition min_id := min_id. Notation min_idempotent := min_id (only parsing). Definition min_assoc := min_assoc. Definition min_comm := min_comm. Definition min_l := min_l. Definition min_r := min_r. Definition le_min_l := le_min_l. Definition le_min_r := le_min_r. Definition min_le := min_le. Definition min_le_iff := min_le_iff. Definition min_lt_iff := min_lt_iff. Definition min_glb_l := min_glb_l. Definition min_glb_r := min_glb_r. Definition min_glb := min_glb. Definition min_glb_iff := min_glb_iff. Definition min_glb_lt := min_glb_lt. Definition min_glb_lt_iff := min_glb_lt_iff. Definition min_le_compat_l := min_le_compat_l. Definition min_le_compat_r := min_le_compat_r. Definition min_le_compat := min_le_compat. Definition min_max_absorption := min_max_absorption. Definition max_min_absorption := max_min_absorption. Definition max_min_distr := max_min_distr. Definition min_max_distr := min_max_distr. Definition max_min_modular := max_min_modular. Definition min_max_modular := min_max_modular. Definition max_min_disassoc := max_min_disassoc. (** * Properties specific to the [nat] domain *) (** Simplifications *) Lemma max_0_l : forall n, max 0 n = n. Proof. reflexivity. Qed. Lemma max_0_r : forall n, max n 0 = n. Proof. destruct n; auto. Qed. Lemma min_0_l : forall n, min 0 n = 0. Proof. reflexivity. Qed. Lemma min_0_r : forall n, min n 0 = 0. Proof. destruct n; auto. Qed. (** Compatibilities (consequences of monotonicity) *) Lemma succ_max_distr : forall n m, S (max n m) = max (S n) (S m). Proof. auto. Qed. Lemma succ_min_distr : forall n m, S (min n m) = min (S n) (S m). Proof. auto. Qed. Lemma plus_max_distr_l : forall n m p, max (p + n) (p + m) = p + max n m. Proof. intros. apply max_monotone. repeat red; auto with arith. Qed. Lemma plus_max_distr_r : forall n m p, max (n + p) (m + p) = max n m + p. Proof. intros. apply max_monotone with (f:=fun x => x + p). repeat red; auto with arith. Qed. Lemma plus_min_distr_l : forall n m p, min (p + n) (p + m) = p + min n m. Proof. intros. apply min_monotone. repeat red; auto with arith. Qed. Lemma plus_min_distr_r : forall n m p, min (n + p) (m + p) = min n m + p. Proof. intros. apply min_monotone with (f:=fun x => x + p). repeat red; auto with arith. Qed. Hint Resolve max_l max_r le_max_l le_max_r min_l min_r le_min_l le_min_r : arith v62.