(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (le (S n) (S m)). Proof. Induction 1; Auto. Qed. Theorem le_trans : (n,m,p:nat)(le n m)->(le m p)->(le n p). Proof. Induction 2; Auto. Qed. Theorem le_n_Sn : (n:nat)(le n (S n)). Proof. Auto. Qed. Theorem le_O_n : (n:nat)(le O n). Proof. Induction n ; Auto. Qed. Hints Resolve le_n_S le_n_Sn le_O_n le_n_S le_trans : arith v62. Theorem le_pred_n : (n:nat)(le (pred n) n). Proof. Induction n ; Auto with arith. Qed. Hints Resolve le_pred_n : arith v62. Theorem le_trans_S : (n,m:nat)(le (S n) m)->(le n m). Proof. Intros n m H ; Apply le_trans with (S n) ; Auto with arith. Qed. Hints Immediate le_trans_S : arith v62. Theorem le_S_n : (n,m:nat)(le (S n) (S m))->(le n m). Proof. Intros n m H ; Change (le (pred (S n)) (pred (S m))). (* (le (pred (S n)) (pred (S m))) ============================ H : (le (S n) (S m)) m : nat n : nat *) Elim H ; Simpl ; Auto with arith. Qed. Hints Immediate le_S_n : arith v62. (* Negative properties *) Theorem le_Sn_O : (n:nat)~(le (S n) O). Proof. Red ; Intros n H. (* False ============================ H : (lt n O) n : nat *) Change (IsSucc O) ; Elim H ; Simpl ; Auto with arith. Qed. Hints Resolve le_Sn_O : arith v62. Theorem le_Sn_n : (n:nat)~(le (S n) n). Proof. Induction n; Auto with arith. Qed. Hints Resolve le_Sn_n : arith v62. Theorem le_antisym : (n,m:nat)(le n m)->(le m n)->(n=m). Proof. Intros n m h ; Elim h ; Auto with arith. (* (m:nat)(le n m)->((le m n)->(n=m))->(le (S m) n)->(n=(S m)) ============================ h : (le n m) m : nat n : nat *) Intros m0 H H0 H1. Absurd (le (S m0) m0) ; Auto with arith. (* (le (S m0) m0) ============================ H1 : (le (S m0) n) H0 : (le m0 n)->(n=m0) H : (le n m0) m0 : nat *) Apply le_trans with n ; Auto with arith. Qed. Hints Immediate le_antisym : arith v62. Theorem le_n_O_eq : (n:nat)(le n O)->(O=n). Proof. Auto with arith. Qed. Hints Immediate le_n_O_eq : arith v62. (* A different elimination principle for the order on natural numbers *) Lemma le_elim_rel : (P:nat->nat->Prop) ((p:nat)(P O p))-> ((p,q:nat)(le p q)->(P p q)->(P (S p) (S q)))-> (n,m:nat)(le n m)->(P n m). Proof. Induction n; Auto with arith. Intros n' HRec m Le. Elim Le; Auto with arith. Qed.