(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Prop := | le_n : n <= n | le_S : forall m:nat, n <= m -> n <= S m where "n <= m" := (le n m) : nat_scope. >> *) Require Import PeanoNat. Local Open Scope nat_scope. (** * [le] is an order on [nat] *) Notation le_refl := Nat.le_refl (only parsing). Notation le_trans := Nat.le_trans (only parsing). Notation le_antisym := Nat.le_antisymm (only parsing). Hint Resolve le_trans: arith. Hint Immediate le_antisym: arith. (** * Properties of [le] w.r.t 0 *) Notation le_0_n := Nat.le_0_l (only parsing). (* 0 <= n *) Notation le_Sn_0 := Nat.nle_succ_0 (only parsing). (* ~ S n <= 0 *) Lemma le_n_0_eq n : n <= 0 -> 0 = n. Proof. intros. symmetry. now apply Nat.le_0_r. Qed. (** * Properties of [le] w.r.t successor *) (** See also [Nat.succ_le_mono]. *) Theorem le_n_S : forall n m, n <= m -> S n <= S m. Proof Peano.le_n_S. Theorem le_S_n : forall n m, S n <= S m -> n <= m. Proof Peano.le_S_n. Notation le_n_Sn := Nat.le_succ_diag_r (only parsing). (* n <= S n *) Notation le_Sn_n := Nat.nle_succ_diag_l (only parsing). (* ~ S n <= n *) Theorem le_Sn_le : forall n m, S n <= m -> n <= m. Proof Nat.lt_le_incl. Hint Resolve le_0_n le_Sn_0: arith. Hint Resolve le_n_S le_n_Sn le_Sn_n : arith. Hint Immediate le_n_0_eq le_Sn_le le_S_n : arith. (** * Properties of [le] w.r.t predecessor *) Notation le_pred_n := Nat.le_pred_l (only parsing). (* pred n <= n *) Notation le_pred := Nat.pred_le_mono (only parsing). (* n<=m -> pred n <= pred m *) Hint Resolve le_pred_n: arith. (** * A different elimination principle for the order on natural numbers *) Lemma le_elim_rel : forall P:nat -> nat -> Prop, (forall p, P 0 p) -> (forall p (q:nat), p <= q -> P p q -> P (S p) (S q)) -> forall n m, n <= m -> P n m. Proof. intros P H0 HS. induction n; trivial. intros m Le. elim Le; auto with arith. Qed. (* begin hide *) Notation le_O_n := le_0_n (only parsing). Notation le_Sn_O := le_Sn_0 (only parsing). Notation le_n_O_eq := le_n_0_eq (only parsing). (* end hide *)