(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* r -> a = q * b + r -> diveucl a b. Lemma eucl_dev : forall n, n > 0 -> forall m:nat, diveucl m n. Proof. induction m as (m,H0) using gt_wf_rec. destruct (le_gt_dec n m) as [Hlebn|Hgtbn]. destruct (H0 (m - n)) as (q,r,Hge0,Heq); auto with arith. apply divex with (S q) r; trivial. simpl; rewrite <- plus_assoc, <- Heq; auto with arith. apply divex with 0 m; simpl; trivial. Defined. Lemma quotient : forall n, n > 0 -> forall m:nat, {q : nat | exists r : nat, m = q * n + r /\ n > r}. Proof. induction m as (m,H0) using gt_wf_rec. destruct (le_gt_dec n m) as [Hlebn|Hgtbn]. destruct (H0 (m - n)) as (q & Hq); auto with arith; exists (S q). destruct Hq as (r & Heq & Hgt); exists r; split; trivial. simpl; rewrite <- plus_assoc, <- Heq; auto with arith. exists 0; exists m; simpl; auto with arith. Defined. Lemma modulo : forall n, n > 0 -> forall m:nat, {r : nat | exists q : nat, m = q * n + r /\ n > r}. Proof. induction m as (m,H0) using gt_wf_rec. destruct (le_gt_dec n m) as [Hlebn|Hgtbn]. destruct (H0 (m - n)) as (r & Hr); auto with arith; exists r. destruct Hr as (q & Heq & Hgt); exists (S q); split; trivial. simpl; rewrite <- plus_assoc, <- Heq; auto with arith. exists m; exists 0; simpl; auto with arith. Defined.