(* $Id$ *) (**************************************************************************) (* Equality on natural numbers *) (**************************************************************************) Fixpoint eq_nat [n:nat] : nat -> Prop := [m:nat]Cases n m of O O => True | O (S _) => False | (S _) O => False | (S n1) (S m1) => (eq_nat n1 m1) end. Theorem eq_nat_refl : (n:nat)(eq_nat n n). Induction n; Simpl; Auto. Qed. Hints Resolve eq_nat_refl : arith v62. Theorem eq_eq_nat : (n,m:nat)(n=m)->(eq_nat n m). Induction 1; Trivial with arith. Qed. Hints Immediate eq_eq_nat : arith v62. Theorem eq_nat_eq : (n,m:nat)(eq_nat n m)->(n=m). Induction n; Induction m; Simpl; Contradiction Orelse Auto with arith. Qed. Hints Immediate eq_nat_eq : arith v62. Theorem eq_nat_elim : (n:nat)(P:nat->Prop)(P n)->(m:nat)(eq_nat n m)->(P m). Intros; Replace m with n; Auto with arith. Qed. Theorem eq_nat_decide : (n,m:nat){(eq_nat n m)}+{~(eq_nat n m)}. Induction n. Destruct m. Auto with arith. Intro; Right; Red; Trivial with arith. Destruct m. Right; Red; Auto with arith. Intros. Simpl. Apply H. Defined. Fixpoint beq_nat [n:nat] : nat -> bool := [m:nat]Cases n m of O O => true | O (S _) => false | (S _) O => false | (S n1) (S m1) => (beq_nat n1 m1) end. Lemma beq_nat_refl : (x:nat)true=(beq_nat x x). Proof. Induction x; Simpl; Auto. Qed. Definition beq_nat_eq : (x,y:nat)true=(beq_nat x y)->x=y. Proof. Double Induction 1 2; Simpl. Reflexivity. Intros; Discriminate H0. Intros; Discriminate H0. Intros; Case (H0 ? H1); Reflexivity. Defined.