(* This requires cumulativity *) Definition Type2 := Type. Definition Type1 := Type : Type2. Lemma lem1 : (True->Type1)->Type2. Intro H. Apply H. Exact I. Qed. Lemma lem2 : (A:Type)(P:A->Type)(x:A)((y:A)(x==y)->(P y))->(P x). Auto. Qed. Lemma lem3 : (P:Prop)P. Intro P ; Pattern P. Apply lem2. Abort. (* Check managing of universe constraints in inversion *) (* Bug report #855 *) Inductive dep_eq : (X:Type) X -> X -> Prop := | intro_eq : (X:Type) (f:X)(dep_eq X f f) | intro_feq : (A:Type) (B:A->Type) let T = (x:A)(B x) in (f, g:T) (x:A) (dep_eq (B x) (f x) (g x)) -> (dep_eq T f g). Require Import Relations. Theorem dep_eq_trans : (X:Type) (transitive X (dep_eq X)). Proof. Unfold transitive. Intros X f g h H1 H2. Inversion H1.