(* The tactic language *) (* Submitted by Pierre Crégut *) (* Checks substitution of x *) Tactic Definition f x := Unfold x; Idtac. Lemma lem1 : (plus O O) = O. f plus. Reflexivity. Qed. (* Submitted by Pierre Crégut *) (* Check syntactic correctness *) Recursive Tactic Definition F x := Idtac; (G x) And G y := Idtac; (F y). (* Check that Match Context keeps a closure *) Tactic Definition U := Let a = 'I In Match Context With [ |- ? ] -> Apply a. Lemma lem2 : True. U. Qed. (* Check that Match giving non-tactic arguments are evaluated at Let-time *) Tactic Definition B := Let y = (Match Context With [ z:? |- ? ] -> z) In Intro H1; Exact y. Lemma lem3 : True -> False -> True -> False. Intros H H0. B. (* y is H0 if at let-time, H1 otherwise *) Qed. (* Checks the matching order of hypotheses *) Tactic Definition Y := Match Context With [ x:?; y:? |- ? ] -> Apply x. Tactic Definition Z := Match Context With [ y:?; x:? |- ? ] -> Apply x. Lemma lem4 : (True->False) -> (False->False) -> False. Intros H H0. Z. (* Apply H0 *) Y. (* Apply H *) Exact I. Qed. (* Check backtracking *) Lemma back1 : (0)=(1)->(0)=(0)->(1)=(1)->(0)=(0). Intros; Match Context With [_:(O)=?1;_:(1)=(1)|-? ] -> Exact (refl_equal ? ?1). Qed. Lemma back2 : (0)=(0)->(0)=(1)->(1)=(1)->(0)=(0). Intros; Match Context With [_:(O)=?1;_:(1)=(1)|-? ] -> Exact (refl_equal ? ?1). Qed. Lemma back3 : (0)=(0)->(1)=(1)->(0)=(1)->(0)=(0). Intros; Match Context With [_:(O)=?1;_:(1)=(1)|-? ] -> Exact (refl_equal ? ?1). Qed. (* Check context binding *) Tactic Definition sym t := Match t With [C[?1=?2]] -> Inst C[?1=?2]. Lemma sym : ~(0)=(1)->~(1)=(0). Intro H. Let t = (sym (Check H)) In Assert t. Exact H. Intro H1. Apply H. Symmetry. Assumption. Qed. (* Check context binding in match goal *) (* This wasn't working in V8.0pl1, as the list of matched hyps wasn't empty *) Tactic Definition sym' := Match Context With [_:True|-C[?1=?2]] -> Let t = Inst C[?2=?1] In Assert t. Lemma sym' : True->~(0)=(1)->~(1)=(0). Intros Ht H. sym'. Exact H. Intro H1. Apply H. Symmetry. Assumption. Qed. (* Check that fails abort the current match context *) Lemma decide : True \/ False. (Match Context With | _ -> Fail 1 | _ -> Right) Orelse Left. Exact I. Qed. (* Check that "match c with" backtracks on subterms *) Lemma refl : (1)=(1). Let t = (Match (1)=(2) With [[(S ?1)]] -> '((refl_equal nat ?1) :: (1)=(1))) In Assert H:=t. Assumption. Qed. (* Note that backtracking in "match c with" is only on type-checking not on evaluation of tactics. E.g., this does not work Lemma refl : (1)=(1). Match (1)=(2) With [[(S ?1)]] -> Apply (refl_equal nat ?1). Qed. *)