Definition le_trans:=O. Module Test_Read. Module M. Read Module Le. (* Reading without importing *) Check Le.le_trans. Lemma th0 : le_trans = O. Reflexivity. Qed. End M. Check Le.le_trans. Lemma th0 : le_trans = O. Reflexivity. Qed. Import M. Lemma th1 : le_trans = O. Reflexivity. Qed. End Test_Read. (****************************************************************) Definition le_decide := (S O). (* from Arith/Compare *) Definition min := O. (* from Arith/Min *) Module Test_Require. Module M. Require Compare. (* Imports Min as well *) Lemma th1 : le_decide = Compare.le_decide. Reflexivity. Qed. Lemma th2 : min = Min.min. Reflexivity. Qed. End M. (* Checks that Compare and List are loaded *) Check Compare.le_decide. Check Min.min. (* Checks that Compare and List are _not_ imported *) Lemma th1 : le_decide = (S O). Reflexivity. Qed. Lemma th2 : min = O. Reflexivity. Qed. (* It should still be the case after Import M *) Import M. Lemma th3 : le_decide = (S O). Reflexivity. Qed. Lemma th4 : min = O. Reflexivity. Qed. End Test_Require. (****************************************************************) Module Test_Import. Module M. Import Compare. (* Imports Min as well *) Lemma th1 : le_decide = Compare.le_decide. Reflexivity. Qed. Lemma th2 : min = Min.min. Reflexivity. Qed. End M. (* Checks that Compare and List are loaded *) Check Compare.le_decide. Check Min.min. (* Checks that Compare and List are _not_ imported *) Lemma th1 : le_decide = (S O). Reflexivity. Qed. Lemma th2 : min = O. Reflexivity. Qed. (* It should still be the case after Import M *) Import M. Lemma th3 : le_decide = (S O). Reflexivity. Qed. Lemma th4 : min = O. Reflexivity. Qed. End Test_Import. (***********************************************************************) Module Test_Export. Module M. Export Compare. (* Exports Min as well *) Lemma th1 : le_decide = Compare.le_decide. Reflexivity. Qed. Lemma th2 : min = Min.min. Reflexivity. Qed. End M. (* Checks that Compare and List are _not_ imported *) Lemma th1 : le_decide = (S O). Reflexivity. Qed. Lemma th2 : min = O. Reflexivity. Qed. (* After Import M they should be imported as well *) Import M. Lemma th3 : le_decide = Compare.le_decide. Reflexivity. Qed. Lemma th4 : min = Min.min. Reflexivity. Qed. End Test_Export. (***********************************************************************) Module Test_Require_Export. Definition mult_sym:=(S O). (* from Arith/Mult *) Definition plus_sym:=O. (* from Arith/Plus *) Module M. Require Export Mult. (* Exports Plus as well *) Lemma th1 : mult_sym = Mult.mult_sym. Reflexivity. Qed. Lemma th2 : plus_sym = Plus.plus_sym. Reflexivity. Qed. End M. (* Checks that Mult and Plus are _not_ imported *) Lemma th1 : mult_sym = (S O). Reflexivity. Qed. Lemma th2 : plus_sym = O. Reflexivity. Qed. (* After Import M they should be imported as well *) Import M. Lemma th3 : mult_sym = Mult.mult_sym. Reflexivity. Qed. Lemma th4 : plus_sym = Plus.plus_sym. Reflexivity. Qed. End Test_Require_Export.