Polymorphic Cumulative Inductive T1 := t1 : T1. Fail Monomorphic Cumulative Inductive T2 := t2 : T2. Polymorphic Cumulative Record R1 := { r1 : T1 }. Fail Monomorphic Cumulative Inductive R2 := {r2 : T1}. Set Universe Polymorphism. Set Polymorphic Inductive Cumulativity. Set Printing Universes. Inductive List (A: Type) := nil | cons : A -> List A -> List A. Section ListLift. Universe i j. Constraint i < j. Definition LiftL {A} : List@{i} A -> List@{j} A := fun x => x. End ListLift. Lemma LiftL_Lem A (l : List A) : l = LiftL l. Proof. reflexivity. Qed. Section ListLower. Universe i j. Constraint i < j. Definition LowerL {A : Type@{i}} : List@{j} A -> List@{i} A := fun x => x. End ListLower. Lemma LowerL_Lem@{i j} (A : Type@{j}) (l : List@{i} A) : l = LowerL l. Proof. reflexivity. Qed. Inductive Tp := tp : Type -> Tp. Section TpLift. Universe i j. Constraint i < j. Definition LiftTp : Tp@{i} -> Tp@{j} := fun x => x. End TpLift. Lemma LiftC_Lem (t : Tp) : LiftTp t = t. Proof. reflexivity. Qed. Section TpLower. Universe i j. Constraint i < j. Fail Definition LowerTp : Tp@{j} -> Tp@{i} := fun x => x. End TpLower. Section subtyping_test. Universe i j. Constraint i < j. Inductive TP2 := tp2 : Type@{i} -> Type@{j} -> TP2. End subtyping_test. Record A : Type := { a :> Type; }. Record B (X : A) : Type := { b : X; }. NonCumulative Inductive NCList (A: Type) := ncnil | nccons : A -> NCList A -> NCList A. Section NCListLift. Universe i j. Constraint i < j. Fail Definition LiftNCL {A} : NCList@{i} A -> NCList@{j} A := fun x => x. End NCListLift. Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x. Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b}) := forall f g : (forall a, B a), (forall x, eq@{e} (f x) (g x)) -> eq@{e} f g. Section down. Universes a b e e'. Constraint e' < e. Lemma funext_down {A B} : @funext_type@{a b e} A B -> @funext_type@{a b e'} A B. Proof. intros H f g Hfg. exact (H f g Hfg). Defined. End down.