Set Universe Polymorphism. Set Inductive Cumulativity. Set Printing Universes. Inductive List (A: Type) := nil | cons : A -> List A -> List A. Section ListLift. Universe i j. Constraint i < j. Definition LiftL {A} : List@{i} A -> List@{j} A := fun x => x. End ListLift. Lemma LiftL_Lem A (l : List A) : l = LiftL l. Proof. reflexivity. Qed. Section ListLower. Universe i j. Constraint i < j. Definition LowerL {A : Type@{i}} : List@{j} A -> List@{i} A := fun x => x. End ListLower. Lemma LowerL_Lem@{i j} (A : Type@{j}) (l : List@{i} A) : l = LowerL l. Proof. reflexivity. Qed. Inductive Tp := tp : Type -> Tp. Section TpLift. Universe i j. Constraint i < j. Definition LiftTp : Tp@{i} -> Tp@{j} := fun x => x. End TpLift. Lemma LiftC_Lem (t : Tp) : LiftTp t = t. Proof. reflexivity. Qed. Section TpLower. Universe i j. Constraint i < j. Fail Definition LowerTp : Tp@{j} -> Tp@{i} := fun x => x. End TpLower. Section subtyping_test. Universe i j. Constraint i < j. Inductive TP2 := tp2 : Type@{i} -> Type@{j} -> TP2. End subtyping_test. Record A : Type := { a :> Type; }. Record B (X : A) : Type := { b : X; }.