Module bt. Require Import Equivalence. Record Equ (A : Type) (R : A -> A -> Prop). Definition equiv {A} R (e : Equ A R) := R. Record Refl (A : Type) (R : A -> A -> Prop). Axiom equ_refl : forall A R (e : Equ A R), Refl _ (@equiv A R e). Hint Extern 0 (Refl _ _) => unshelve class_apply @equ_refl; [|shelve|] : foo. Variable R : nat -> nat -> Prop. Lemma bas : Equ nat R. Admitted. Hint Resolve bas : foo. Hint Extern 1 => match goal with |- (_ -> _ -> Prop) => shelve end : foo. Goal exists R, @Refl nat R. eexists. Set Typeclasses Debug. (* Fail solve [unshelve eauto with foo]. *) Set Typeclasses Debug Verbosity 1. Test Typeclasses Depth. solve [typeclasses eauto with foo]. Qed. (* Set Typeclasses Compatibility "8.5". *) Parameter f : nat -> Prop. Parameter g : nat -> nat -> Prop. Parameter h : nat -> nat -> nat -> Prop. Axiom a : forall x y, g x y -> f x -> f y. Axiom b : forall x (y : Empty_set), g (fst (x,y)) x. Axiom c : forall x y z, h x y z -> f x -> f y. Hint Resolve a b c : mybase. Goal forall x y z, h x y z -> f x -> f y. intros. Set Typeclasses Debug. typeclasses eauto with mybase. Unshelve. Abort. End bt. Generalizable All Variables. Module mon. Reserved Notation "'return' t" (at level 0). Reserved Notation "x >>= y" (at level 65, left associativity). Record Monad {m : Type -> Type} := { unit : forall {α}, α -> m α where "'return' t" := (unit t) ; bind : forall {α β}, m α -> (α -> m β) -> m β where "x >>= y" := (bind x y) ; bind_unit_left : forall {α β} (a : α) (f : α -> m β), return a >>= f = f a }. Print Visibility. Print unit. Implicit Arguments unit [[m] [m0] [α]]. Implicit Arguments Monad []. Notation "'return' t" := (unit t). (* Test correct handling of existentials and defined fields. *) Class A `(e: T) := { a := True }. Class B `(e_: T) := { e := e_; sg_ass :> A e }. Set Typeclasses Debug. Goal forall `{B T}, Prop. intros. apply a. Defined. Goal forall `{B T}, Prop. intros. refine (@a _ _ _). Defined. Class B' `(e_: T) := { e' := e_; sg_ass' :> A e_ }. Goal forall `{B' T}, a. intros. exact I. Defined. End mon. (* Correct treatment of dependent goals *) (* First some preliminaries: *) Section sec. Context {N: Type}. Class C (f: N->N) := {}. Class E := { e: N -> N }. Context (g: N -> N) `(E) `(C e) `(forall (f: N -> N), C f -> C (fun x => f x)) (U: forall f: N -> N, C f -> False). (* Now consider the following: *) Let foo := U (fun x => e x). Check foo _. (* This type checks fine, so far so good. But now let's try to get rid of the intermediate constant foo. Surely we can just expand it inline, right? Wrong!: *) Check U (fun x => e x) _. End sec. Module IterativeDeepening. Class A. Class B. Class C. Instance: B -> A | 0. Instance: C -> A | 0. Instance: C -> B -> A | 0. Instance: A -> A | 0. Goal C -> A. intros. Set Typeclasses Debug. Fail Timeout 1 typeclasses eauto. Set Typeclasses Iterative Deepening. Fail typeclasses eauto 1. typeclasses eauto 2. Undo. Unset Typeclasses Iterative Deepening. Fail Timeout 1 typeclasses eauto. Set Typeclasses Iterative Deepening. typeclasses eauto. Qed. End IterativeDeepening.