(* Check coercions in patterns *) Inductive I : Set := | C1 : nat -> I | C2 : I -> I. Coercion C1 : nat >-> I. (* Coercion at the root of pattern *) Check (fun x => match x with | C2 n => 0 | O => 0 | S n => n end). (* Coercion not at the root of pattern *) Check (fun x => match x with | C2 O => 0 | _ => 0 end). (* Unification and coercions inside patterns *) Check (fun x : option nat => match x with | None => 0 | Some O => 0 | _ => 0 end). (* Coercion up to delta-conversion, and unification *) Coercion somenat := Some (A:=nat). Check (fun x => match x with | None => 0 | O => 0 | S n => n end). (* Coercions with parameters *) Inductive listn : nat -> Set := | niln : listn 0 | consn : forall n : nat, nat -> listn n -> listn (S n). Inductive I' : nat -> Set := | C1' : forall n : nat, listn n -> I' n | C2' : forall n : nat, I' n -> I' n. Coercion C1' : listn >-> I'. Check (fun x : I' 0 => match x with | C2' _ _ => 0 | niln => 0 | _ => 0 end). Check (fun x : I' 0 => match x with | C2' _ niln => 0 | _ => 0 end). (* This one could eventually be solved, the "Fail" is just to ensure *) (* that it does not fail with an anomaly, as it did at some time *) Fail Check (fun x : I' 0 => match x return _ x with | C2' _ _ => 0 | niln => 0 | _ => 0 end). (* Check insertion of coercions around matched subterm *) Parameter A:Set. Parameter f:> A -> nat. Inductive J : Set := D : A -> J. Check (fun x => match x with | D 0 => 0 | D _ => 1 end). (* Check coercions against the type of the term to match *) (* Used to fail in V8.1beta *) Inductive C : Set := c : C. Inductive E : Set := e :> C -> E. Check fun (x : E) => match x with c => e c end. (* Check coercions with uniform parameters (cf bug #1168) *) Inductive C' : bool -> Set := c' : C' true. Inductive E' (b : bool) : Set := e' :> C' b -> E' b. Check fun (x : E' true) => match x with c' => e' true c' end. (* Check use of the no-dependency strategy when a type constraint is given (and when the "inversion-and-dependencies-as-evars" strategy is not strong enough because of a constructor with a type whose pattern structure is not refined enough for it to be captured by the inversion predicate) *) Inductive K : bool -> bool -> Type := F : K true true | G x : K x x. Check fun z P Q (y:K true z) (H1 H2:P y) (f:forall y, P y -> Q y z) => match y with | F => f y H1 | G _ => f y H2 end : Q y z. (* Check use of the maximal-dependency-in-variable strategy even when no explicit type constraint is given (and when the "inversion-and-dependencies-as-evars" strategy is not strong enough because of a constructor with a type whose pattern structure is not refined enough for it to be captured by the inversion predicate) *) Check fun z P Q (y:K true z) (H1 H2:P y) (f:forall y z, P y -> Q y z) => match y with | F => f y true H1 | G b => f y b H2 end. (* Check use of the maximal-dependency-in-variable strategy for "Var" variables *) Goal forall z P Q (y:K true z) (H1 H2:P y) (f:forall y z, P y -> Q y z), Q y z. intros z P Q y H1 H2 f. Show. refine (match y with | F => f y true H1 | G b => f y b H2 end). Qed.