(* This example was proposed by Cuihtlauac ALVARADO *) Require PolyList. Fixpoint mult2 [n:nat] : nat := Cases n of | O => O | (S n) => (S (S (mult2 n))) end. Inductive list : nat -> Set := | nil : (list O) | cons : (n:nat)(list (mult2 n))->(list (S (S (mult2 n)))). Type [P:((n:nat)(list n)->Prop); f:(P O nil); f0:((n:nat; l:(list (mult2 n))) (P (mult2 n) l)->(P (S (S (mult2 n))) (cons n l)))] Fix F {F [n:nat; l:(list n)] : (P n l) :=
Cases l of nil => f | (cons n0 l0) => (f0 n0 l0 (F (mult2 n0) l0)) end}. Inductive list' : nat -> Set := | nil' : (list' O) | cons' : (n:nat)[m:=(mult2 n)](list' m)->(list' (S (S m))). Fixpoint length [n; l:(list' n)] : nat := Cases l of nil' => O | (cons' _ m l0) => (S (length m l0)) end. Type [P:((n:nat)(list' n)->Prop); f:(P O nil'); f0:((n:nat) [m:=(mult2 n)](l:(list' m))(P m l)->(P (S (S m)) (cons' n l)))] Fix F {F [n:nat; l:(list' n)] : (P n l) :=
Cases l of nil' => f | (cons' n0 m l0) => (f0 n0 l0 (F m l0)) end}. (* Check on-the-fly insertion of let-in patterns for compatibility *) Inductive list'' : nat -> Set := | nil'' : (list'' O) | cons'' : (n:nat)[m:=(mult2 n)](list'' m)->[p:=(S (S m))](list'' p). Check Fix length { length [n; l:(list'' n)] : nat := Cases l of nil'' => O | (cons'' n l0) => (S (length (mult2 n) l0)) end }.