(************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-2008 *) (* *) (************************************************************************) Require Import ZArith. Require Import Psatz. Open Scope Z_scope. Require Import ZMicromega. Require Import VarMap. (* false in Q : x=1/2 and n=1 *) Lemma not_so_easy : forall x n : Z, 2*x + 1 <= 2 *n -> x <= n-1. Proof. intros. lia. Qed. (* From Laurent Théry *) Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0. Proof. intros. psatz Z 2. Qed. Lemma Zdiscr: forall a b c x, a * x ^ 2 + b * x + c = 0 -> b ^ 2 - 4 * a * c >= 0. Proof. intros ; psatz Z 4. Qed. Lemma plus_minus : forall x y, 0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y. Proof. intros. lia. Qed. Lemma mplus_minus : forall x y, x + y >= 0 -> x -y >= 0 -> x^2 - y^2 >= 0. Proof. intros; psatz Z 2. Qed. Lemma pol3: forall x y, 0 <= x + y -> x^3 + 3*x^2*y + 3*x* y^2 + y^3 >= 0. Proof. intros; psatz Z 4. Qed. (* Motivating example from: Expressiveness + Automation + Soundness: Towards COmbining SMT Solvers and Interactive Proof Assistants *) Parameter rho : Z. Parameter rho_ge : rho >= 0. Parameter correct : Z -> Z -> Prop. Definition rbound1 (C:Z -> Z -> Z) : Prop := forall p s t, correct p t /\ s <= t -> C p t - C p s <= (1-rho)*(t-s). Definition rbound2 (C:Z -> Z -> Z) : Prop := forall p s t, correct p t /\ s <= t -> (1-rho)*(t-s) <= C p t - C p s. Lemma bounded_drift : forall s t p q C D, s <= t /\ correct p t /\ correct q t /\ rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D -> Z.abs (C p t - D q t) <= Z.abs (C p s - D q s) + 2 * rho * (t- s). Proof. intros. generalize (Z.abs_eq (C p t - D q t)). generalize (Z.abs_neq (C p t - D q t)). generalize (Z.abs_eq (C p s -D q s)). generalize (Z.abs_neq (C p s - D q s)). unfold rbound2 in H. unfold rbound1 in H. intuition. generalize (H6 _ _ _ (conj H H4)). generalize (H7 _ _ _ (conj H H4)). generalize (H8 _ _ _ (conj H H4)). generalize (H10 _ _ _ (conj H H4)). generalize (H6 _ _ _ (conj H5 H4)). generalize (H7 _ _ _ (conj H5 H4)). generalize (H8 _ _ _ (conj H5 H4)). generalize (H10 _ _ _ (conj H5 H4)). generalize rho_ge. psatz Z 2. Qed. (* Rule of signs *) Lemma sign_pos_pos: forall x y, x > 0 -> y > 0 -> x*y > 0. Proof. intros; psatz Z 2. Qed. Lemma sign_pos_zero: forall x y, x > 0 -> y = 0 -> x*y = 0. Proof. intros; psatz Z 2. Qed. Lemma sign_pos_neg: forall x y, x > 0 -> y < 0 -> x*y < 0. Proof. intros; psatz Z 2. Qed. Lemma sign_zer_pos: forall x y, x = 0 -> y > 0 -> x*y = 0. Proof. intros; psatz Z 2. Qed. Lemma sign_zero_zero: forall x y, x = 0 -> y = 0 -> x*y = 0. Proof. intros; psatz Z 2. Qed. Lemma sign_zero_neg: forall x y, x = 0 -> y < 0 -> x*y = 0. Proof. intros; psatz Z 2. Qed. Lemma sign_neg_pos: forall x y, x < 0 -> y > 0 -> x*y < 0. Proof. intros; psatz Z 2. Qed. Lemma sign_neg_zero: forall x y, x < 0 -> y = 0 -> x*y = 0. Proof. intros; psatz Z 2. Qed. Lemma sign_neg_neg: forall x y, x < 0 -> y < 0 -> x*y > 0. Proof. intros; psatz Z 2. Qed. (* Other (simple) examples *) Lemma binomial : forall x y, (x+y)^2 = x^2 + 2*x*y + y^2. Proof. intros. lia. Qed. Lemma product : forall x y, x >= 0 -> y >= 0 -> x * y >= 0. Proof. intros. psatz Z 2. Qed. Lemma product_strict : forall x y, x > 0 -> y > 0 -> x * y > 0. Proof. intros. psatz Z 2. Qed. Lemma pow_2_pos : forall x, x ^ 2 + 1 = 0 -> False. Proof. intros ; psatz Z 2. Qed. (* Found in Parrilo's talk *) (* BUG?: certificate with **very** big coefficients *) Lemma parrilo_ex : forall x y, x - y^2 + 3 >= 0 -> y + x^2 + 2 = 0 -> False. Proof. intros. psatz Z 2. Qed. (* from hol_light/Examples/sos.ml *) Lemma hol_light1 : forall a1 a2 b1 b2, a1 >= 0 -> a2 >= 0 -> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) -> (a1 * b1 + a2 * b2 = 0) -> a1 * a2 - b1 * b2 >= 0. Proof. intros ; psatz Z 4. Qed. Lemma hol_light2 : forall x a, 3 * x + 7 * a < 4 -> 3 < 2 * x -> a < 0. Proof. intros ; psatz Z 2. Qed. Lemma hol_light3 : forall b a c x, b ^ 2 < 4 * a * c -> (a * x ^2 + b * x + c = 0) -> False. Proof. intros ; psatz Z 4. Qed. Lemma hol_light4 : forall a c b x, a * x ^ 2 + b * x + c = 0 -> b ^ 2 >= 4 * a * c. Proof. intros ; psatz Z 4. Qed. Lemma hol_light5 : forall x y, 0 <= x /\ x <= 1 /\ 0 <= y /\ y <= 1 -> x ^ 2 + y ^ 2 < 1 \/ (x - 1) ^ 2 + y ^ 2 < 1 \/ x ^ 2 + (y - 1) ^ 2 < 1 \/ (x - 1) ^ 2 + (y - 1) ^ 2 < 1. Proof. intros; psatz Z 3. Qed. Lemma hol_light7 : forall x y z, 0<= x /\ 0 <= y /\ 0 <= z /\ x + y + z <= 3 -> x * y + x * z + y * z >= 3 * x * y * z. Proof. intros ; psatz Z 3. Qed. Lemma hol_light8 : forall x y z, x ^ 2 + y ^ 2 + z ^ 2 = 1 -> (x + y + z) ^ 2 <= 3. Proof. intros ; psatz Z 2. Qed. Lemma hol_light9 : forall w x y z, w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = 1 -> (w + x + y + z) ^ 2 <= 4. Proof. intros; psatz Z 2. Qed. Lemma hol_light10 : forall x y, x >= 1 /\ y >= 1 -> x * y >= x + y - 1. Proof. intros ; psatz Z 2. Qed. Lemma hol_light11 : forall x y, x > 1 /\ y > 1 -> x * y > x + y - 1. Proof. intros ; psatz Z 2. Qed. Lemma hol_light12: forall x y z, 2 <= x /\ x <= 125841 / 50000 /\ 2 <= y /\ y <= 125841 / 50000 /\ 2 <= z /\ z <= 125841 / 50000 -> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= 0. Proof. intros x y z ; set (e:= (125841 / 50000)). compute in e. unfold e ; intros ; psatz Z 2. Qed. Lemma hol_light14 : forall x y z, 2 <= x /\ x <= 4 /\ 2 <= y /\ y <= 4 /\ 2 <= z /\ z <= 4 -> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z). Proof. intros ;psatz Z 2. Qed. (* ------------------------------------------------------------------------- *) (* Inequality from sci.math (see "Leon-Sotelo, por favor"). *) (* ------------------------------------------------------------------------- *) Lemma hol_light16 : forall x y, 0 <= x /\ 0 <= y /\ (x * y = 1) -> x + y <= x ^ 2 + y ^ 2. Proof. intros ; psatz Z 2. Qed. Lemma hol_light17 : forall x y, 0 <= x /\ 0 <= y /\ (x * y = 1) -> x * y * (x + y) <= x ^ 2 + y ^ 2. Proof. intros ; psatz Z 3. Qed. Lemma hol_light18 : forall x y, 0 <= x /\ 0 <= y -> x * y * (x + y) ^ 2 <= (x ^ 2 + y ^ 2) ^ 2. Proof. intros ; psatz Z 4. Qed. (* ------------------------------------------------------------------------- *) (* Some examples over integers and natural numbers. *) (* ------------------------------------------------------------------------- *) Lemma hol_light19 : forall m n, 2 * m + n = (n + m) + m. Proof. intros ; lia. Qed. Lemma hol_light22 : forall n, n >= 0 -> n <= n * n. Proof. intros. psatz Z 2. Qed. Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0 -> ((x1 + y1) ^2 + x1 + 1 = (x2 + y2) ^ 2 + x2 + 1) -> (x1 + y1 = x2 + y2). Proof. intros. psatz Z 2. Qed. Lemma motzkin' : forall x y, (x^2+y^2+1)*(x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0. Proof. intros. psatz Z 1. Qed. Lemma motzkin : forall x y, (x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0. Proof. intros. generalize (motzkin' x y). psatz Z 8. Qed.