Set Universe Polymorphism. Set Implicit Arguments. Record PreCategory := { object :> Type ; morphism : object -> object -> Type }. Bind Scope category_scope with PreCategory. Record Functor (C D : PreCategory) := { object_of :> C -> D; morphism_of : forall s d, morphism C s d -> morphism D (object_of s) (object_of d); identity_of : forall s m, morphism_of s s m = morphism_of s s m }. Definition sub_pre_cat (P : PreCategory -> Type) : PreCategory. Proof. exact (@Build_PreCategory PreCategory Functor). Defined. Definition opposite (C : PreCategory) : PreCategory. Proof. exact (@Build_PreCategory C (fun s d => morphism C d s)). Defined. Local Notation "C ^op" := (opposite C) (at level 3, format "C '^op'") : category_scope. Definition prod (C D : PreCategory) : PreCategory. Proof. refine (@Build_PreCategory (C * D)%type (fun s d => (morphism C (fst s) (fst d) * morphism D (snd s) (snd d))%type)). Defined. Local Infix "*" := prod : category_scope. Axiom functor_category : PreCategory -> PreCategory -> PreCategory. Local Notation "C -> D" := (functor_category C D) : category_scope. Module Export PointwiseCore. Definition pointwise (C C' : PreCategory) (F : Functor C' C) (D D' : PreCategory) (G : Functor D D') : Functor (C -> D) (C' -> D'). Proof. refine (Build_Functor (C -> D) (C' -> D') _ _ _); abstract admit. Defined. End PointwiseCore. Axiom Pidentity_of : forall (C D : PreCategory) (F : Functor C C) (G : Functor D D), pointwise F G = pointwise F G. Local Open Scope category_scope. Definition functor_uncurried (P : PreCategory -> Type) (has_functor_categories : forall C D : @sub_pre_cat P, P (C -> D)) : object (((@sub_pre_cat P)^op * (@sub_pre_cat P)) -> (@sub_pre_cat P)). Proof. pose (let object_of := (fun CD => (((fst CD) -> (snd CD)))) in Build_Functor ((@sub_pre_cat P)^op * (@sub_pre_cat P)) (@sub_pre_cat P) object_of (fun CD C'D' FG => pointwise (fst FG) (snd FG)) (fun _ _ => Pidentity_of _ _)) || fail "early". Include PointwiseCore. Fail pose (let object_of := (fun CD => (((fst CD) -> (snd CD)))) in Build_Functor ((@sub_pre_cat P)^op * (@sub_pre_cat P)) (@sub_pre_cat P) object_of (fun CD C'D' FG => pointwise (fst FG) (snd FG)) (fun _ _ => Pidentity_of _ _)).