Require Export Morphisms Setoid. Class lops := lmk_ops { car: Type; weq: relation car }. Implicit Arguments car []. Coercion car: lops >-> Sortclass. Instance weq_Equivalence `{lops}: Equivalence weq. Proof. Admitted. Module lset. Canonical Structure lset_ops A := lmk_ops (list A) (fun h k => True). End lset. Class ops := mk_ops { ob: Type; mor: ob -> ob -> lops; dot: forall n m p, mor n m -> mor m p -> mor n p }. Coercion mor: ops >-> Funclass. Implicit Arguments ob []. Instance dot_weq `{ops} n m p: Proper (weq ==> weq ==> weq) (dot n m p). Proof. Admitted. Section s. Import lset. Context `{X:lops} {I: Type}. Axiom sup : forall (f: I -> X) (J : list I), X. Global Instance sup_weq: Proper (pointwise_relation _ weq ==> weq ==> weq) sup. Proof. Admitted. End s. Axiom ord : forall (n : nat), Type. Axiom seq : forall n, list (ord n). Infix "==" := weq (at level 79). Infix "*" := (dot _ _ _) (left associativity, at level 40). Notation "∑_ ( i ∈ l ) f" := (@sup (mor _ _) _ (fun i => f) l) (at level 41, F at level 41, i, A at level 50). Axiom dotxsum : forall `{X : ops} I J n m p (f: I -> X m n) (x: X p m) y, x * (∑_(i∈ J) f i) == y. Definition mx X n m := ord n -> ord m -> X. Section bsl. Context `{X : ops} {u: ob X}. Notation U := (car (@mor X u u)). Lemma toto n m p q (M : mx U n m) N (P : mx U p q) Q i j : ∑_(j0 ∈ seq m) M i j0 * (∑_(j1 ∈ seq p) N j0 j1 * P j1 j) == Q. Proof. Fail setoid_rewrite dotxsum. (* Toplevel input, characters 0-22: Error: Tactic failure:setoid rewrite failed: Unable to satisfy the rewriting constraints. Unable to satisfy the following constraints: UNDEFINED EVARS: ?101==[X u n m p q M N P Q i j j0 |- U] (goal evar) ?106==[X u n m p q M N P Q i j |- relation (X u u)] (internal placeholder) ?107==[X u n m p q M N P Q i j |- relation (list (ord m))] (internal placeholder) ?108==[X u n m p q M N P Q i j (do_subrelation:=do_subrelation) |- Proper (pointwise_relation (ord m) weq ==> ?107 ==> ?106) sup] (internal placeholder) ?109==[X u n m p q M N P Q i j |- ProperProxy ?107 (seq m)] (internal placeholder) ?110==[X u n m p q M N P Q i j |- relation (X u u)] (internal placeholder) ?111==[X u n m p q M N P Q i j (do_subrelation:=do_subrelation) |- Proper (?106 ==> ?110 ==> Basics.flip Basics.impl) weq] (internal placeholder) ?112==[X u n m p q M N P Q i j |- ProperProxy ?110 Q] (internal placeholder)UNIVERSES: {} |= Top.14 <= Top.37 Top.25 <= Top.24 Top.25 <= Top.32 ALGEBRAIC UNIVERSES:{} UNDEFINED UNIVERSES:METAS: 470[y] := ?101 : car (?99 ?467 ?465) 469[x] := M i _UNBOUND_REL_1 : car (?99 ?467 ?466) [type is checked] 468[f] := fun i : ?463 => N _UNBOUND_REL_2 i * P i j : ?463 -> ?99 ?466 ?465 [type is checked] 467[p] := u : ob ?99 [type is checked] 466[m] := u : ob ?99 [type is checked] 465[n] := u : ob ?99 [type is checked] 464[J] := seq p : list ?463 [type is checked] 463[I] := ord p : Type [type is checked] *) Abort. End bsl.