Section Counted_list. Variable A : Type. Inductive counted_list : nat -> Type := | counted_nil : counted_list 0 | counted_cons : forall(n : nat), A -> counted_list n -> counted_list (S n). Fixpoint counted_def_nth{n : nat}(l : counted_list n) (i : nat)(def : A) : A := match i with | 0 => match l with | counted_nil => def | counted_cons _ a _ => a end | S i => match l with | counted_nil => def | counted_cons _ _ tl => counted_def_nth tl i def end end. Lemma counted_list_equal_nth_char : forall(n : nat)(l1 l2 : counted_list n)(def : A), (forall(i : nat), counted_def_nth l1 i def = counted_def_nth l2 i def) -> l1 = l2. Proof. admit. Qed. End Counted_list. Implicit Arguments counted_def_nth [A n]. Section Finite_nat_set. Variable set_size : nat. Definition fnat_subset : Type := counted_list bool set_size. Definition fnat_member(fs : fnat_subset)(n : nat) : Prop := is_true (counted_def_nth fs n false). Lemma fnat_subset_member_eq : forall(fs1 fs2 : fnat_subset), fs1 = fs2 <-> forall(n : nat), fnat_member fs1 n <-> fnat_member fs2 n. Proof. intros fs1 fs2. split. intros H n. subst fs1. apply iff_refl. intros H. eapply counted_list_equal_nth_char. intros i. Fail destruct (counted_def_nth fs1 i _ ) eqn:H0.