(* -*- mode: coq; coq-prog-args: ("-noinit" "-indices-matter" "-w" "-notation-overridden,-deprecated-option") -*- *) (* The Coq Proof Assistant, version 8.7.1 (January 2018) compiled on Jan 21 2018 15:02:24 with OCaml 4.06.0 from commit 391bb5e196901a3a9426295125b8d1c700ab6992 *) Require Export Coq.Init.Notations. Notation "'∏' x .. y , P" := (forall x, .. (forall y, P) ..) (at level 200, x binder, y binder, right associativity) : type_scope. Notation "'λ' x .. y , t" := (fun x => .. (fun y => t) ..) (at level 200, x binder, y binder, right associativity). Notation "A -> B" := (forall (_ : A), B) : type_scope. Reserved Notation "p @ q" (at level 60, right associativity). Reserved Notation "! p " (at level 50). Monomorphic Universe uu. Monomorphic Universe uu0. Monomorphic Universe uu1. Constraint uu0 < uu1. Global Set Universe Polymorphism. Global Set Polymorphic Inductive Cumulativity. Global Unset Universe Minimization ToSet. Notation UU := Type (only parsing). Notation UU0 := Type@{uu0} (only parsing). Global Set Printing Universes. Inductive unit : UU0 := tt : unit. Inductive paths@{i} {A:Type@{i}} (a:A) : A -> Type@{i} := idpath : paths a a. Hint Resolve idpath : core . Notation "a = b" := (paths a b) (at level 70, no associativity) : type_scope. Set Primitive Projections. Set Nonrecursive Elimination Schemes. Record total2@{i} { T: Type@{i} } ( P: T -> Type@{i} ) : Type@{i} := tpair { pr1 : T; pr2 : P pr1 }. Arguments tpair {_} _ _ _. Arguments pr1 {_ _} _. Arguments pr2 {_ _} _. Notation "'∑' x .. y , P" := (total2 (λ x, .. (total2 (λ y, P)) ..)) (at level 200, x binder, y binder, right associativity) : type_scope. Definition foo (X:Type) (xy : @total2 X (λ _, X)) : X. induction xy as [x y]. exact x. Defined. Unset Automatic Introduction. Definition idfun (T : UU) := λ t:T, t. Definition pathscomp0 {X : UU} {a b c : X} (e1 : a = b) (e2 : b = c) : a = c. Proof. intros. induction e1. exact e2. Defined. Hint Resolve @pathscomp0 : pathshints. Notation "p @ q" := (pathscomp0 p q). Definition pathsinv0 {X : UU} {a b : X} (e : a = b) : b = a. Proof. intros. induction e. exact (idpath _). Defined. Notation "! p " := (pathsinv0 p). Definition maponpaths {T1 T2 : UU} (f : T1 -> T2) {t1 t2 : T1} (e: t1 = t2) : f t1 = f t2. Proof. intros. induction e. exact (idpath _). Defined. Definition map_on_two_paths {X Y Z : UU} (f : X -> Y -> Z) {x x' y y'} (ex : x = x') (ey: y = y') : f x y = f x' y'. Proof. intros. induction ex. induction ey. exact (idpath _). Defined. Definition maponpathscomp0 {X Y : UU} {x1 x2 x3 : X} (f : X -> Y) (e1 : x1 = x2) (e2 : x2 = x3) : maponpaths f (e1 @ e2) = maponpaths f e1 @ maponpaths f e2. Proof. intros. induction e1. induction e2. exact (idpath _). Defined. Definition maponpathsinv0 {X Y : UU} (f : X -> Y) {x1 x2 : X} (e : x1 = x2) : maponpaths f (! e) = ! (maponpaths f e). Proof. intros. induction e. exact (idpath _). Defined. Definition constr1 {X : UU} (P : X -> UU) {x x' : X} (e : x = x') : ∑ (f : P x -> P x'), ∑ (ee : ∏ p : P x, tpair _ x p = tpair _ x' (f p)), ∏ (pp : P x), maponpaths pr1 (ee pp) = e. Proof. intros. induction e. split with (idfun (P x)). split with (λ p, idpath _). unfold maponpaths. simpl. intro. exact (idpath _). Defined. Definition transportf@{i} {X : Type@{i}} (P : X -> Type@{i}) {x x' : X} (e : x = x') : P x -> P x' := pr1 (constr1 P e). Lemma two_arg_paths_f@{i} {A : Type@{i}} {B : A -> Type@{i}} {C:Type@{i}} {f : ∏ a, B a -> C} {a1 b1 a2 b2} (p : a1 = a2) (q : transportf B p b1 = b2) : f a1 b1 = f a2 b2. Proof. intros. induction p. induction q. exact (idpath _). Defined. Definition iscontr@{i} (T:Type@{i}) : Type@{i} := ∑ cntr:T, ∏ t:T, t=cntr. Lemma proofirrelevancecontr {X : UU} (is : iscontr X) (x x' : X) : x = x'. Proof. intros. induction is as [y fe]. exact (fe x @ !(fe x')). Defined. Definition hfiber@{i} {X Y : Type@{i}} (f : X -> Y) (y : Y) : Type@{i} := total2 (λ x, f x = y). Definition hfiberpair {X Y : UU} (f : X -> Y) {y : Y} (x : X) (e : f x = y) : hfiber f y := tpair _ x e. Definition coconustot (T : UU) (t : T) := ∑ t' : T, t' = t. Definition coconustotpair (T : UU) {t t' : T} (e: t' = t) : coconustot T t := tpair _ t' e. Lemma connectedcoconustot {T : UU} {t : T} (c1 c2 : coconustot T t) : c1 = c2. Proof. intros. induction c1 as [x0 x]. induction x. induction c2 as [x1 y]. induction y. exact (idpath _). Defined. Definition isweq@{i} {X Y : Type@{i}} (f : X -> Y) : Type@{i} := ∏ y : Y, iscontr (hfiber f y). Lemma isProofIrrelevantUnit : ∏ x x' : unit, x = x'. Proof. intros. induction x. induction x'. exact (idpath _). Defined. Lemma unitl0 : tt = tt -> coconustot _ tt. Proof. intros e. exact (coconustotpair unit e). Defined. Lemma unitl1: coconustot _ tt -> tt = tt. Proof. intro cp. induction cp as [x t]. induction x. exact t. Defined. Lemma unitl2: ∏ e : tt = tt, unitl1 (unitl0 e) = e. Proof. intros. unfold unitl0. simpl. exact (idpath _). Defined. Lemma unitl3: ∏ e : tt = tt, e = idpath tt. Proof. intros. assert (e0 : unitl0 (idpath tt) = unitl0 e). { simple refine (connectedcoconustot _ _). } set (e1 := maponpaths unitl1 e0). exact (! (unitl2 e) @ (! e1) @ (unitl2 (idpath _))). Defined. Theorem iscontrpathsinunit (x x' : unit) : iscontr (x = x'). Proof. intros. split with (isProofIrrelevantUnit x x'). intros e'. induction x. induction x'. simpl. apply unitl3. Qed. Lemma ifcontrthenunitl0 (e1 e2 : tt = tt) : e1 = e2. Proof. intros. simple refine (proofirrelevancecontr _ _ _). exact (iscontrpathsinunit tt tt). Qed. Section isweqcontrtounit. Universe i. (* To see the bug, run it both with and without this constraint: *) (* Constraint uu0 < i. *) (* Without this constraint, we get i = uu0 in the next definition *) Lemma isweqcontrtounit@{} {T : Type@{i}} (is : iscontr@{i} T) : isweq@{i} (λ _:T, tt). Proof. intros. intro y. induction y. induction is as [c h]. split with (hfiberpair@{i i i} _ c (idpath tt)). intros ha. induction ha as [x e]. simple refine (two_arg_paths_f (h x) _). simple refine (ifcontrthenunitl0 _ _). Defined. (* Explanation of the bug: With the constraint uu0 < i above we get: |= uu0 <= bug.3 uu0 <= i uu1 <= i i <= bug.3 from this print statement: *) Print isweqcontrtounit. (* Without the constraint uu0 < i above we get: |= i <= bug.3 uu0 = i Since uu0 = i is not inferred when we impose the constraint uu0 < i, it is invalid to infer it when we don't. *) Context (X : Type@{uu1}). Check (@isweqcontrtounit X). (* detect a universe inconsistency *) End isweqcontrtounit.