Require Import TestSuite.admit. (* File reduced by coq-bug-finder from original input, then from 6082 lines to 81 lines, then from 436 lines to 93 lines *) (* coqc version 8.5beta1 (February 2015) compiled on Feb 27 2015 15:10:37 with OCaml 4.01.0 coqtop version cagnode15:/afs/csail.mit.edu/u/j/jgross/coq-8.5,v8.5 (fc1b3ef9d7270938cd83c524aae0383093b7a4b5) *) Global Set Primitive Projections. Record sigT {A} (P : A -> Type) := exist { projT1 : A ; projT2 : P projT1 }. Arguments projT1 {A P} _ / . Arguments projT2 {A P} _ / . Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope. Delimit Scope path_scope with path. Delimit Scope fibration_scope with fibration. Open Scope path_scope. Open Scope fibration_scope. Notation "( x ; y )" := (exist _ _ x y) : fibration_scope. Notation pr1 := projT1. Notation pr2 := projT2. Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope. Notation "x .2" := (pr2 x) (at level 3, format "x '.2'") : fibration_scope. Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. Arguments idpath {A a} , [A] a. Notation "x = y :> A" := (@paths A x y) : type_scope. Notation "x = y" := (x = y :>_) : type_scope. Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end. Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end. Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope. Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope. Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y := match p with idpath => u end. Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope. Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end. Definition apD {A:Type} {B:A->Type} (f:forall a:A, B a) {x y:A} (p:x=y): p # (f x) = f y := match p with idpath => idpath end. Lemma transport_compose {A B} {x y : A} (P : B -> Type) (f : A -> B) (p : x = y) (z : P (f x)) : transport (fun x => P (f x)) p z = transport P (ap f p) z. admit. Defined. Generalizable Variables X A B C f g n. Definition pr1_path `{P : A -> Type} {u v : sigT P} (p : u = v) : u.1 = v.1 := ap pr1 p. Notation "p ..1" := (pr1_path p) (at level 3) : fibration_scope. Definition pr2_path `{P : A -> Type} {u v : sigT P} (p : u = v) : p..1 # u.2 = v.2 := (transport_compose P pr1 p u.2)^ @ (@apD {x:A & P x} _ pr2 _ _ p). Notation "p ..2" := (pr2_path p) (at level 3) : fibration_scope. Definition path_path_sigma_uncurried {A : Type} (P : A -> Type) (u v : sigT P) (p q : u = v) (rs : {r : p..1 = q..1 & transport (fun x => transport P x u.2 = v.2) r p..2 = q..2}) : p = q. admit. Defined. Set Debug Unification. Definition path_path_sigma {A : Type} (P : A -> Type) (u v : sigT P) (p q : u = v) (r : p..1 = q..1) (s : transport (fun x => transport P x u.2 = v.2) r p..2 = q..2) : p = q := path_path_sigma_uncurried P u v p q (r; s).