Require Import TestSuite.admit. (* File reduced by coq-bug-finder from original input, then from 2073 lines to 358 lines, then from 359 lines to 218 lines, then from 107 lines to 92 lines *) (* coqc version trunk (October 2014) compiled on Oct 11 2014 1:13:41 with OCaml 4.01.0 coqtop version cagnode16:/afs/csail.mit.edu/u/j/jgross/coq-trunk,trunk (d65496f09c4b68fa318783e53f9cd6d5c18e1eb7) *) Require Coq.Lists.List. Import Coq.Lists.List. Set Implicit Arguments. Global Set Asymmetric Patterns. Section machine. Variables pc state : Type. Inductive propX (i := pc) (j := state) : list Type -> Type := | Inj : forall G, Prop -> propX G | ExistsX : forall G A, propX (A :: G) -> propX G. Implicit Arguments Inj [G]. Definition PropX := propX nil. Fixpoint last (G : list Type) : Type. exact (match G with | nil => unit | T :: nil => T | _ :: G' => last G' end). Defined. Fixpoint eatLast (G : list Type) : list Type. exact (match G with | nil => nil | _ :: nil => nil | x :: G' => x :: eatLast G' end). Defined. Fixpoint subst G (p : propX G) : (last G -> PropX) -> propX (eatLast G) := match p with | Inj _ P => fun _ => Inj P | ExistsX G A p1 => fun p' => match G return propX (A :: G) -> propX (eatLast (A :: G)) -> propX (eatLast G) with | nil => fun p1 _ => ExistsX p1 | _ :: _ => fun _ rc => ExistsX rc end p1 (subst p1 (match G return (last G -> PropX) -> last (A :: G) -> PropX with | nil => fun _ _ => Inj True | _ => fun p' => p' end p')) end. Definition spec := state -> PropX. Definition codeSpec := pc -> option spec. Inductive valid (specs : codeSpec) (G : list PropX) : PropX -> Prop := Env : forall P, In P G -> valid specs G P. Definition interp specs := valid specs nil. End machine. Notation "'ExX' : A , P" := (ExistsX (A := A) P) (at level 89) : PropX_scope. Bind Scope PropX_scope with PropX propX. Variables pc state : Type. Inductive subs : list Type -> Type := | SNil : subs nil | SCons : forall T Ts, (last (T :: Ts) -> PropX pc state) -> subs (eatLast (T :: Ts)) -> subs (T :: Ts). Fixpoint SPush G T (s : subs G) (f : T -> PropX pc state) : subs (T :: G) := match s in subs G return subs (T :: G) with | SNil => SCons _ nil f SNil | SCons T' Ts f' s' => SCons T (T' :: Ts) f' (SPush s' f) end. Fixpoint Substs G (s : subs G) : propX pc state G -> PropX pc state := match s in subs G return propX pc state G -> PropX pc state with | SNil => fun p => p | SCons _ _ f s' => fun p => Substs s' (subst p f) end. Variable specs : codeSpec pc state. Lemma simplify_fwd_ExistsX : forall G A s (p : propX pc state (A :: G)), interp specs (Substs s (ExX : A, p)) -> exists a, interp specs (Substs (SPush s a) p). admit. Defined. Goal forall (G : list Type) (A : Type) (p : propX pc state (@cons Type A G)) (s : subs G) (_ : @interp pc state specs (@Substs G s (@ExistsX pc state G A p))) (P : forall _ : subs (@cons Type A G), Prop) (_ : forall (s0 : subs (@cons Type A G)) (_ : @interp pc state specs (@Substs (@cons Type A G) s0 p)), P s0), @ex (forall _ : A, PropX pc state) (fun a : forall _ : A, PropX pc state => P (@SPush G A s a)). intros ? ? ? ? H ? H'. apply simplify_fwd_ExistsX in H. firstorder. Qed. (* Toplevel input, characters 15-19: Error: Illegal application: The term "cons" of type "forall A : Type, A -> list A -> list A" cannot be applied to the terms "Type" : "Type" "T" : "Type" "G0" : "list Type" The 2nd term has type "Type@{Top.53}" which should be coercible to "Type@{Top.12}". *)